#menubar{ width:900px; height:32px; background:#de360f; margin: 0 auto; } #menubar ul{ float:left; margin:0; padding:0; } #menubar li{ float:left; list-style:none; margin:0; padding:0; } #menubar li a, #menubar li a:link{ border-right:1px solid #F0512D; float:left; padding:8px 12px; color:#fff; text-decoration:none; font-size:13px; font-weight:bold; } #menubar li a:hover, #menubar li a:active, #menubar .current_page_item a { color:#ffa500; text-decoration:underline; } #menubar li li a, #menubar li li a:link, #menubar li li a:visited{ font-size: 12px; background: #de360f; color: #fff; text-decoration:none; width: 150px; padding: 0px 10px; line-height:30px; } #menubar li li a:hover, #menubar li li a:active { background: #F0512D; color: #ffa500; } #menubar li ul{ z-index:9999; position:absolute; left:-999em; height:auto; width:170px; margin-top:32px; border:1px solid ##F0512D; } #menubar li:hover ul, #menubar li li:hover ul, #menubar li li li:hover ul, #menubar li.sfhover ul, #menubar li li.sfhover ul, #menubar li li li.sfhover ul{ left:auto } #menubar li:hover, #menubar li.sfhover{ position:static }

Sabtu, 01 Maret 2014

SIFAT-SIFAT UMUM DARI GELOMBANG BUNYI

Dalam membicarakan topik akan gelombang bunyi, terlebih dahulu harus diketahui sifat-sifat umum  dari gelombang bunyi tersebut diantaranya


a. Gelombang bunyi memerlukan medium dalam perambatannya
Karena gelombang bunyi merupakan gelombang mekanik, maka dalam perambatannya bunyi memerlukan medium. Hal ini dapat dibuktikan saat dua orang astronout berada jauh dari bumi dan keadaan dalam pesawat dibuat hampa udara, astronout tersebut tidak dapat bercakap-cakap langsung tetapi menggunakan alat komunikasi seperti telepon. Meskipun dua orang astronout tersebut berada dalam satu pesawat.


b. Gelombang bunyi mengalami pemantulan (refleksi)
Salah satu sifat gelombang adalah dapat dipantulkan sehingga gelombang bunyi juga dapat mengalami hal ini. Hukum pemantulan gelombang: sudut datang = sudut pantul juga berlaku pada gelombang bunyi. Hal ini dapat dibuktikan bahwa pemantulan bunyi dalam ruang tertutup dapat menimbulkan gaung. Yaitu sebagian bunyi pantul bersamaan dengan bunyi asli sehingga bunyi asli terdengar tidak jelas. Untuk menghindari terjadinya gaung maka dalam bioskop, studio radio dan televisi, dan gedung konser musik dindingnya dilapisi zat peredam suara yang biasanya terbuat dari kain wol, kapas, gelas, karet, atau
besi.


c. Gelombang bunyi mengalami pembiasan (refraksi)
Salah satu sifat gelombang adalah mengalami pembiasan. Peristiwa pembiasan dalam kehidupan sehari-hari misalnya pada malam hari bunyi petir terdengar lebih keras daripada siang hari. Hal ini disebabkan karena pada pada siang hari udara lapisan atas lebih dingin daripada dilapisan bawah. Karena cepat rambat bunyi pada suhu dingin lebih kecil daripada suhu panas maka kecepatan bunyi dilapisan udara atas lebih kecil daripada dilapisan bawah, yang berakibat medium lapisan atas lebih rapat dari medium lapisan bawah. Hal yang sebaliknya terjadi pada malam hari. Jadi pada siang hari bunyi petir merambat dari lapisan udara atas kelapisan udara bawah. Untuk lebih jelasnya hal ini dapat kalian lihat pada gambar dibawah.


d. Gelombang bunyi mengalami pelenturan (difraksi)
Gelombang bunyi sangat mudah mengalami difraksi karena gelombang bunyi diudara memiliki panjang gelombang dalam rentang sentimeter sampai beberapa meter. Seperti yang kita ketahui, bahwa gelombang yang lebih panjang akan lebih mudah didifraksikan. Peristiwa difraksi terjadi misalnya saat kita dapat mendengar suara mesin mobilditikungan jalan walaupun kita belum melihat mobil tersebut karena terhalang oleh bangunan tinggi dipinggir tikungan.


e. Gelombang bunyi mengalami perpaduan (interferensi)
Gelombang bunyi mengalami gejala perpaduan gelombang atau interferensi, yang dibedakan menjadi dua yaitu interferensi konstruktif atau penguatan bunyi dan interferensi destruktif atau pelemahan bunyi. Misalnya waktu kita berada diantara dua buah loud-speaker dengan frekuensi dan amplitudo yang sama atau hampir sama maka kita akan mendengar bunyi yang keras dan lemah secara bergantian 

Sifat Gelombang Bunyi

.
Pada umumnya, bunyi memiliki tiga sifat, yaitu tinggi rendah bunyi, kuat lemah bunyi, dan warna bunyi. Tinggi rendah bunyi adalah kondisi gelombang bunyi yang diterima oleh telinga manusia berdasarkan frekuensi (jumlah getaran per detik). Tinggi suara (pitch) menunjukkan sifat bunyi yang mencirikan ketinggian atau kerendahannya terhadap seorang pengamat. Sifat ini berhubungan dengan frekuensi, namun tidak sama. Kekerasan bunyi juga mempengaruhi titi nada. Hingga 1.000 Hz, meningkatnya kekerasan mengakibatkan turunnya titi nada.
Tinggi rendah bunyi dipengaruhi frekuensi. (a) Frekuensi tinggi, (b) Frekuensi rendah
Gambar 3. Tinggi rendah bunyi dipengaruhi frekuensi. (a) Frekuensi tinggi, (b) Frekuensi rendah.
Gelombang bunyi dibatasi oleh jangkauan frekuensi yang dapat merangsang telinga dan otak manusia kepada sensasi pendengaran. Jangkauan ini adalah 20 Hz sampai 20.000 Hz, di mana telinga manusia normal mampu mendengar suatu bunyi. Jangkauan frekuensi ini disebut audiosonik. Sebuah gelombang bunyi yang memiliki frekuensi di bawah 20 Hz dinamakan sebuah gelombang infrasonik. Sementara itu, bunyi yang memiliki frekuensi di atas 20.000 Hz disebut ultrasonik.
Kelelawar
Gambar 4. Kelelawar mampu mendengarkan bunyi ultrasonik.
Banyak hewan yang dapat mendengar bunyi yang frekuensinya di atas 20.000 Hz. Misalnya, kelelawar dapat mendeteksi bunyi yang frekuensinya sampai 100.000 Hz, dan anjing dapat mendengar bunyi setinggi 50.000 Hz. Kelelawar menggunakan ultrasonik sebagai alat penyuara gema untuk terbang dan berburu. Kelelawar mengeluarkan decitan yang sangat tinggi dan menggunakan telinganya yang besar untuk menangkap mangsanya. Gema itu memberitahu kelelawar mengenai lokasi mangsanya atau rintangan di depannya (misalnya pohon atau dinding gua).
Kuat lemah atau intensitas bunyi adalah kondisi gelombang bunyi yang diterima oleh telinga manusia berdasarkan amplitudo dari gelombang tersebut. Amplitudo adalah simpangan maksimum, yaitu simpangan terjauh gelombang dari titik setimbangnya. Intensitas menunjukkan sejauh mana bunyi dapat terdengar. Jika intensitasnya kecil, bunyi akan melemah dan tidak dapat terdengar.
Kuat lemah bunyi dipengaruhi oleh amplitudo, (a) amplitudo kecil, (b) amplitud besar
Gambar 5. Kuat lemah bunyi dipengaruhi oleh amplitudo, (a) amplitudo kecil, (b) amplitud besar.
Namun, apabila intensitasnya besar, bunyi menjadi semakin kuat, sehingga berbahaya bagi alat pendengaran. Untuk mengetahui hubungan antara amplitudo dan kuat nada, dapat diketahui dengan melakukan percobaan menggunakan garputala. Garputala dipukulkan ke meja dengan dua pukulan yang berbeda, akan dihasilkan yaitu pukulan yang keras menghasilkan bunyi yang lebih kuat.
Hal ini menunjukkan bahwa amplitudo getaran yang terjadi lebih besar. Dengan demikian, dapat disimpulkan bahwa kuat lemahnya nada atau bunyi bergantung pada besar kecilnya amplitudo. Semakin besar amplitudo getaran, maka semakin kuat pula bunyi yang dihasilkan. Warna bunyi adalah bunyi yang diterima oleh alat pendengaran berdasarkan sumber getarannya. Sumber getaran yang berbeda akan menghasilkan bentuk gelombang bunyi yang berbeda pula. Hal ini menyebabkan nada yang sama dari dua sumber getaran yang berbeda pada telinga manusia.
2.0 GELOMBANG BUNYI
sebelum kita, mempelajari gelombang bunyi kita harus tahu tentang bunyi,, berikut ialah penjelasannya:::::: selamat menikmati!!

Bunyi atau suara adalah kompresi mekanikal atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batu bara, atau udara.

Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel.

Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia kira-kira dari 20 Hz sampai 20 kHz pada amplitudo umum dengan berbagai variasi dalam kurva responsnya. Suara di atas 20 kHz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik


sedangkan gelombang bunyi adalah.....

Gelombang bunyi terdiri dari molekul-molekul udara yang bergetar maju-mundur. Tiap saat, molekul-molekul itu berdesakan di beberapa tempat, sehingga menghasilkan wilayah tekanan tinggi, tapi di tempat lain merenggang, sehingga menghasilkan wilayah tekanan rendah. Gelombang bertekanan tinggi dan rendah secara bergantian bergerak di udara, menyebar dari sumber bunyi. Gelombang bunyi ini menghantarkan bunyi ke telinga manusia,Gelombang bunyi adalah gelombang longitudinal.
jadi:
secara sederhana, gelombang didefinisikan sebagai getaran atau gangguan yang merambat dari suatu lokasi ke lokasi lainnya. Bunyi termasuk gelombang. Gelombang bunyi timbul akibat bergetarnya suatu benda, yang kemudian getarannya merambat dalam medium dari suatu lokasi menuju lokasi lainnya. Partikel medium tempat bunyi merambat akan memindahkan energi getar dengan arah sejajar ato paralel dengan arah rambat gelombang




Sifat-sifat Gelombang Bunyi

1 Pemantulan gelombang bunyi

Pemantulan gelombang bunyi dapat memberikan dampak merugikan dan menguntungkan, antara lain : timbulnya gaung/gema di dalam ruangan yang luas, pemanfaatan bunyi untuk mengukur kedalaman sumur.

Gaung/gema

Gema dapat timbul jika jarak antara sumber bunyi (biasanya sekaligus pendengar)

55 meter dari dinding pemantul. Jika diketahui kecepatan perambatan bunyi di udara rata-rata 340 m/s, sedangkan waktu yang diperlukan untuk menyelesaikan satu suku kata ! 1/3 s, maka jarak yang ditempuh gelombang bunyi dari sumber bunyi ke dinding pemantul sampai ke pendengar sebesar

340 m/s x 1/3 s = 113,33 m

sehingga 133,33 m : 2 = 56,67 m


2 Interferensi gelombang bunyi

Dua sumber bunyi dari dua pengeras suara yang berasal dari sebuah audio generator akan menghasilkan gelombang-

gelombang bunyi yang koheren, yaitu dua gelombang dengan frekuensi sama, amplitudo sama, dan beda fase tetap. Jika rapatan bertemu rapatan atau regangan bertemu regangan maka terjadi penguatan bunyi (konstruktif) sehingga bunyi terdengar semakin keras. Jika regangan bertemu rapatan maka terjadi pelemahan bunyi (destruktif) sehingga bunyi terdengar semakin lemah.

Secara matematis penguatan terjadi jika selisih panjang gelombang sebesar 2nl dan pelemahan terjadi jika selisih panjang gelombang (2n+1)l.

Pada kegiatan paduan suara, seorang konduktor memberikan aba menyamakan suara maksudnya menyamakan tinggi-rendahnya suara atau frekuensi sehingga terjadi interferensi bunyi. Tetapi kadang-kadang suara yang terdengar tidak tepat sama tinggi-rendahnya, berarti telah terjadi pelayangan bunyi yang frekuensi pelayangannya dapat dihitung dengan persamaan

fpelayangan = ftinggi – frendah

Beberapa alat musik berbentuk pipa organa, misalnya seruling, terompet, drum, gitar akustik, dan lain-lain. Pipa organa adalah sebuah pipa yang berisi kolom udara. Terdapat dua jenis pipa organa yang masing-masing menimbulkan pola interferensi gelombang bunyi yang berbeda.

Resonansi

Resonansi adalah ikut bergetarnya molekul udara dalam kolom udara akibat getaran benda, dalam beberapa alat musik akan menimbulkan efek bunyi yang merdu. Pada alat musik berbentuk pipa organa tertutup, yaitu salah satu atau kedua ujung pipanya tertutup, resonansi terjadi jika : l = ¼ l, l, l, dst……, dengan l adalah panjang pipa dan l adalah panjang gelombang bunyi.

Cepat Rambat Bunyi

Cepat rambat bunyi dapat dicari dengan rumus :v = f . l

dengan v : cepat rambat bunyi (m/s)

f : frekuensi bunyi (Hz)

l : panjang gelombang bunyi (m).

Intensitas Bunyi

Tinggi rendahnya bunyi ditentukan oleh frekuensi sedangkan intensitas atau kuat lemahnya bunyi ditentukan oleh amplitudo. Intensitas bunyi dinyatakan dengan persamaan : I = P / A



dengan :

P = daya bunyi (watt)

A = luas bidang yang ditembus gelombang

bunyi (m2) ® A = 4pr2

I = intensitas bunyi (watt/m2)

Batas intensitas bunyi yang dapat didengar oleh manusia adalah antara 1 watt/m2 sampai dengan 10-12 watt/m2. Intensitas terkecil ini disebut intensitas ambang pendengaran.

Taraf intensitas bunyi

Taraf intensitas bunyi (TI) dinyatakan dengan persamaan : TI = 10 log (I/Io)



dengan :

I = intensitas bunyi (watt/m2)

I0 = intensitas ambang bunyi (10-12 watt/m2)

TI = taraf intensitas bunyi (deciBell atau dB)

Efek Doppler

Jika sumber bunyi relatif mendekati pendengar, frekuensi bunyi yang didengar lebih tinggi daripada frekuensi sumber bunyi sebenarnya. Sebaliknya jika sumber bunyi relatif menjauhi pendengar maka frekuensi bunyi yang didengar lebih rendah.

Perbedaan frekuensi bunyi akibat pergerakan sumber bunyi atau pendengar ini disebut efek doppler yang diamati oleh fisikawan Australia bernama Christian Johann Doppler (1803-1855), yang dapt dituliskan dengan persamaan :



dengan :

fp = frekuensi sumber bunyi yang didengar oleh pendengar (Hz)

fs = frekuensi sumber bunyi sebenarnya (Hz)

v = kecepatan gelombang bunyi di udara (m/s)

vp = kecepatan gerak pendengar (m/s)

vs = kecepatan gerak sumber bunyi (m/s)

Tanda vp dan vs :

Jika P adalah pendengar dan S adalah sumber bunyi.

1. P bergerak mendekati S, maka vp diberi tanda (+) sehingga fp > fs.

2. P bergerak menjauhi S, maka vp diberi tanda (-) sehingga fp <>3. S bergerak mendekati P, maka vs diberi tanda (+) sehingga fp > fs.

4. S bergerak menjauhi P, maka vs diberi tanda (-) sehingga fp <>5. P dan S diam, maka vp = vs = 0 sehingga fp = fs.

Neraca Ohaus Dua Lengan dan Tiga Lengan - Ada beberapa alat ukur dari besaran pokok massa, salah satunya neraca ohaus. Dialah Gustav Ohaus, seorang ilmuawan asal New Jersey, Amerika Serikat. Ilmuan kelahiran  30 Agustur 1888 ini memperkenalkan Ohaus Harvard Trip Balance pada tahun 1912 yang kemudian dikenal dengan nama neraca Ohaus.

Neraca ini mempunyai fungsi khusus untuk menimbang barang yang terbuat dari logam dengan ketelitian mencapai 0,01 gram. Tentu saja berat loga yang dapat diukur dengan alat ini adalah logam dengan massa yang cukup kecil. Untuk lebih jelas mengenai neraca ohaus, sobat hitung dapat melihat uraian berikut.
Apa pengertian Neraca Ohaus?
Sama dengan pengertian alat ukur massa lainnya, neraca ohaus adalah alat ukur besaran massa. Yang membedakan masing-masing alat ukur ini adalah ketelitiannya. Neraca Ohaus memiliki ketelitian hingga 1/100 gram.
Bagian-bagian Neraca Ohaus
  • Cawan beban yang digunakan untuk menempatkan benda yang akan diukur.
  • Tombol kalibrasi yang digunakan untuk mengkalibrasi neraca ketika neraca tidak dapat digunakan untuk mengukur.
  • Lengan neraca untuk neraca 3 lengan berarti terdapat tiga lengan dan untuk neraca ohauss 4  lengan terdapat empat lengan.
  • Pemberat (anting) yang diletakkan pada masing-masing lengan yang dapat digeser-geser dan sebagai penunjuk hasil pengukuran.
  • Titik 0 atau garis kesetimbangan, yang digunakan untuk menentukan titik kesetimbangan.
Ada Berapa Jenis Neraca Ohaus?
Neraca logam ini terbagi menjadi 2 jenis yaitu:
1. Neraca Ohaus Dua Lengan
 gambar neraca ohaus 2 lengan
Anda pasti sering melihat neraca ohaus dua lengan ini di toko-toko emas. Bentuknya seperti lambang dewi keadilan atau logo kemenkumham. Ada dua lengan dengan wadah kecil dari logam untuk menimbang. Lengan satu digunakan untuk meletakkan benda/logam yang akan ditimbang, lengan dua untuk meletakkann bobot timbangan. jadi neraca ini masi memerlukan pemberat untuk ukuran timbangannya. Cara menggunakan neraca ohaus dua lengan sama seperti menggunakan timbangan biasa. Yang perlu diperhatikan adalah memastikan bahwa timbangan dalam posisi seimbang sebelum dilakuan pengukura massa.
2. Neraca Ohaus Tiga Lengan
gambar neraca ohaus 3 lengan
neraca ohaus 3 lengan
Sepeti namanya, neraca ini mempunyai tiga lengan dan satu cawan tempat benda. Neraca yang dalam bahasa inggris disebut ohaus triipel beam ini mempunyai bagian-bagian sebagai :
1. Lengan Depan memiliki anting logam yang dapat digeser dengan skala 0, 1, 2, 3, …, 10 gram. Masing-masing skala bernilai 1 gram.
2. Lengan Tengah, tiap skala dalam lengan ini bernilai 10 gram.
3. Lengan Belakang, sama seperti lengan depan dan tengah tetapi dengan nilai tiap skalanya 100 gram dari 100 gram hingga 500 gram (setengah kilo)
Cara Menggunakan Neraca Ohaus Tiga Lengan
Mengukur berat benda dengan neraca ohaus sangat mudah. Cukup lepas pengunci kemudian taruh beda dalam cawan atau wadah. Jangan lupa terlebih dahulu lakukan kalibrasi dengan cara dengan cara memutar sekrup yang berada disamping atas piringan neraca ke kiri atau ke kanan posisi dua garis pada neraca sejajar. Pastikan benar-benar sejajar agar tidak terjadi keslahan penimbangan. Setelah itu geser anting di ketiga lengannya mulai dari lengan belakang ke lengan depan. Setelah itu jumlahkan nilai dari ketiga lengan tersebut.
Gambar ilustrasi cara memakai neraca ohaus
contoh cara memakai neraca ohaus
Kita akan menimbang sebuah gantungan kunci dengan neraca ohaus dan skala yang terbaca dalam lengan-lengannya sebagai berikut
dari gambar diatas, cara membaca skala neraca ohaus :
Anting lengan depan                     = 5,8 gram
Anting lengan tengah                     = 40,0 gram
Anting lengan belakang                 = 300 gram
—————————————————– +
Jadi total berat gantungan kunci tersebut = 345,8 gram

Manfaat Radioisotop Bagi Kehidupan Sehari-hari



Radioisotop Sebagai Perunut

Bidang Kedokteran

Ca-47, digunakan untuk mengetahui penyakit tulang dan darah.
I-131, digunakan untuk menentukan kelenjar gondok.
K-12, digunakan untuk menentukan penyakit pada otot.
Na-24, digunakan untuk mengetahui penyumbatan darah pada urat.
Tc-99 dan Tl-201, untuk mendeteksi kerusakan jantung.
Xe-133, untuk mendeteksi penyakit paru-paru.
· Untuk mengetahui keefektifan kerja jantung atau ginjal dengan Sodium-24.
· Menentukan lokasi tumor otak, mendeteksi tumor kelenjar gondok dengan Iodium-131
· Membunuh sel-sel kanker dalam tubuh manusia dengan Kobalt-60.
· Mengobati thrombosis (penyempitan pembuluh darah) dengan Natrium-24.
· Mensteril alat bedah, alat suntik dan alat kedokteran lain dengan sinar gamma.

Bidan Hidrologi
- Untuk mengukur kecepatan aliran air sungai, air tanah, dan minyak pada pipa.
- Untuk mendeteksi kebocoran pipa saluran dalam tanah.
- Untuk menentukan pengendapan lumpur
· Mengukur kecepatan aliran atau debit fluida dalam pipa.
· Menentukan jumlah kandungan air dalam tanah.
· Mendeteksi kebocoran pipa yang terbenam dalam tanah.
· Memeriksa endapan lumpur pelabuhan dan terowongan dan mengukur cara lumpur bergerak
dan terbentuk.
· Mengukur tinggi permukaan cairan dalam suatu wadah tertutup.

Bidang Industri
- Untuk mengetahui pengaruh oli dan aditif selama mesin bekerja

Bidang Kimia dan Biologi
- Untuk menentukan gugus O yang membentuk air pada reaksi esterifikasi dan mempelajari mekanisme reaksi fotosintesis, serta untuk mempelajari kesetimbangan dinamis pada reaksi kesetimbangan.

Radioisotop Sebagai Sumber Radiasi
Bidang Kedokteran
Co-60, untuk penyembuhan penyakit kanker dan bahan sterilisasi alat-alat kedokteran.
R-32, untuk penyembuhan penyakit leukemia.
I-131, untuk terapi kenker kelenjar tiroid.

Bidang Industri
- Untuk bidang radiografi pada pemotretan bagian dalam sebuah benda seperti sinar X, sinar Gamma atau neutron.
- Untuk mengontrol ketebalan pada industry kertas, plastic dan logam.
Mengetahui bocor atau tidaknya pipa logam atau mengukur ketebalan baja dengan sinar
gamma yang dipancarkan Kobalt-60 atau Iridium-192.
· Meneliti kekuatan material dan meneliti gejala difusi dalam logam.
· Mengukur ketebalan bahan (lembar kertas) dengan Strontium-90 atau sinar beta.
· Mengefisiensikan pekerjaan mengeruk lumpur pelabuhan dan terowongan dengan
memasukkan isotop Silikon ke dalam lumpur.
· Pemeriksaan tanpa merusak dengan teknik radiografi.
· Lampu petromaks menggunakan Thorium agar nyala lampu lebih terang

Bidang Pertanian
- Sebagai pemberantasan hama, pembentukan bibit unggul dan penyimpanan.
· Mempelajari unsur-unsur tertentu oleh tumbuhan.
· Memproduksi tanaman dengan karakteristik baru.
· Mengkaji proses fotosintesis dalam tanaman hijau dengan Karbon-14.
· Memandulkan serangga-serangga.

· Mendapatkan bibit unggul dengan radiasi sinar gamma dari Kobalt-60.

manfaat gelombang elektromagnetik dalam kehidupa sehari-hari

Pemanfaatan Spektrum Gelombang Elektromagnetik dalam Kehidupan sehari-hari 
Jauh sebelum Maxwell meramalkan gelombang elektromagnetik, cahaya telah dipandang sebagai gelombang. Akan tetapi, tidak seorang pun tahu jenis gelombang apakah cahaya itu. Baru setelah adanya hasil perhitungan Maxwell tentang kecepatan gelombang elektromagnetik dan bukti eksperimen oleh Hertz, cahaya dikategorikan sebagai gelombang elektromagnetik. Tidak hanya cahaya yang termasuk gelombang elektromagnetik melainkan masih banyak lagi jenis-jenis yang termasuk gelombang elektromagnetik. Gelombang elektromagnetik telah dibangkitkan atau dideteksi pada jangkauan frekuensi yang lebar. Jika diurut dari frekuensi terbesar hingga frekuensi terkecil, yaitu sinar gamma, sinar-X, sinar ultraviolet, sinar tampak (cahaya), sinar inframerah, gelombang mikro (radar), gelombang televisi, dan gelombang radio. Gelombang-gelombang ini disebut spektrum gelombang elektromagnetik.
1. Sinar Gamma
Sinar gamma merupakan salah satu spektrum gelombang elektromagnetik yang memiliki frekuensi paling besar atau panjang gelombang terkecil.
v  Frekuensi                              : 1020 Hz sampai 1025 Hz.
v  Panjang gelombang            : Sinar gamma : 1020 - 1025 Hz
v  Manfaat                                 :   Sinar gamma mempunyai daya tembus sangat   tinggi, maka sinar gamma
digunakan dalam berbagai bidang antara lain:
a. industri, untuk mengetahui struktur logam
b. pertanian, untuk membuat bibit unggul
c. teknik nuklir, untuk membuat radio isotop
d. kedokteran, untuk terapi,diagnosis,
diantaranya untuk mengobati penyakit
  kanker dan mensterilkan peralatan rumah sakit. Selain itu, sinar gamma
  dapat digunakan untuk melihat kerusakan pada logam.

e. farmasi, untuk sterilisasi
   Sinar gamma dihasilkan dari peristiwa peluruhan inti radioaktif. Inti atom unsur yang tidak stabil meluruh menjadi inti atom unsur lain yang stabil dengan memancarkan sinar radioaktif, di antaranya sinar alfa, sinar beta, dan sinar gamma. Di antara ketiga sinar radioaktif ini, yang termasuk gelombang elektromagnetik adalah sinar gamma. Sementara dua lainnya merupakan berkas partikel bermuatan listrik. Jika dibandingkan dengan sinar alfa dan sinar beta, sinar gamma memiliki daya tembus yang paling tinggi sehingga dapat menembus pelat logam hingga beberapa sentimeter.
2. Sinar-X
Sinar-X, dikenal juga sebagai sinar Röntgen. Nama ini diambil dari penemunya, yaituWilhelm C. Röntgen (1845 – 1923). Sinar-X dihasilkan dari peristiwa tumbukan antara elektron yang dipercepat pada beda potensial tertentu.
Ø   Frekuensi                             : dalam rentang 30 petahertz - 30 exahertz
Ø  panjang gelombang             : berkisar antara 10 nanometer ke 100pikometer
Ø  Manfaat                  :
a. Bidang kesehatan
Dalam ilmu kedokteran, sinar x dapat digunakan untuk melihat kondisi tulang, gigi serta organ tubuh yang lain tanpa melakukun pembedahan langsung pada tubuh pasien. Biasanya, masyarakat awam menyebutnya dengan sebutan ‘’FOTO RONTGEN’’.
Selain itu, Sinar-X lembut digunakan untuk mengambil gambar foto yang dikenal sebagai radiograf. Sinar-X boleh menembusi badan manusia tetapi diserap oleh bahagian yang lebih tumpat seperti tulang. Gambar foto sinar-X digunakan untuk mengesan kecacatan tulang, mengesan tulang yang patah dan menyiasat keadaan organ-organ dalam badan.
Sinar-X keras digunakan untuk memusnahkan sel-sel kanser. Kaedah ini dikenal sebagai radioterapi.

b. bidang perindustrian
  Dalam bidang perindustrian, sinar-X boleh digunakan untuk
1. mengesan kecacatan dalam struktur binaan atau bahagian-bahagian dalam
  mesin dan enjin.
2. menyiasat rekahan dalam paip logam, dinding konkrit dan dandang tekanan
  tinggi
3. memeriksa retakan dalam struktur plastik dan getah.

c. Bidang kedokteran
Kedokteran nuklir merupakan cabang ilmu kedokteran yang menggunakan sumber radiasi terbuka berasal dari disintegrasi inti radionuklida buatan, untuk mempelajari perubahan fisiologi, anatomi dan biokimia, sehingga dapat digunakan untuk tujuan diagnostik, terapi dan penelitian kedokteran. Radioisotop dapat dimasukkan ke tubuh pasien (studi in­vivo) maupun hanya direaksikan saja dengan bahan biologis antara lain darah, cairan lambung, urine, dan sebagainya, yang diambil dari tubuh pasien, yang lebih dikenal sebagai studi in­vitro (dalam gelas percobaan).Pada studi in­vivo, setelah radioisotop dapat dimasukkan ke tubuh pasien melalui mulut, suntikan, atau dihirup lewat hidung, maka informasi yang dapat diperoleh dari pasien. disamping citra atau gambar yang diperoleh dengan kamera gamma ataupun kamera 
   
3. Sinar Ultraviolet
Sinar ultraviolet dihasilkan dari radiasi sinar Matahari. Selain itu, dapat juga dihasilkan dari transisi elektron dalam orbit atom.
Ø  Frekuensi          : 105 hertz - 1016 hertz.
Ø  Panjang gelobang : 10-8 m 10-7 m.
Ø  Manfaat       :
1. Sumber utama vitamin D.
Sinar ultraviolet ternyata membantu mengubah kolesterol yang tersimpan di kulit menjadi vitamin D. Hanya dengan berjemur selama 5 menit di pagi hari, tubuh kita mendapatkan 400 unit vitamin D.
 2. Mengurangi kolesterol darah.
Proses pembentukan 
vitamin D dimana mengubah kolesterol di dalam darah maka akan mengurangi kadar kolesterol dalam tubuh kita.
3. Penawar infeksi dan pembunuh bakteri.
Sinar ultraviolet ternyata juga membantu membasmi virus-virus penyebab kanker. Secara umum, sinar matahari mampu membunuh bakteri, virus, dan jamur yang berpotensi menyebabkan TBC, peritonitis, pneumonia, dan asma saluran pernapasan.
4. Mengurangi gula darah.
Sinar matahari membantu penyerapan glukosa ke dalam sel-sel tubuh yang merangsang glukosa menjadi glikogen sehingga secara langsung berperan menurunkan kadar gula darah dalam tubuh kita.
5. Meningkatkan kebugaran pernafasan.
Penambahan glikogen di otot dan hati melalui sinar matahari ternyata meningkatkan perbaikan sistem pernafasan karena meningkatkan kemampuan darah dalam menyalurkan oksigen ke seluruh jaringan tubuh.
6. Membantu membentuk dan memperbaiki tulang.
Vitamin D yang dibentuk melalui sinar matahari berfungsi meningkatkan penyerapan kalsium oleh tubuh sehingga memperbaiki komponen tulang dan mencegah penyakit rakhitis, osteoporosis, dan osteomalacia.
7. Meningkatkan kekebalan tubuh.
Sinar matahari mampu meningkatkan antibodi dalam tubuh dengan membentuk sel darah putih untuk melawan substansi asing yang merugikan di dalam tubuh. Membaiknya sistem pernafasan melalui sinar matahari juga berperan dalam membasmi kuman-kuman secara lebih cepat. Selain itu, sinar matahari juga mampu menurunkan potensi terjangkit flu hingga 30-40 persen.
Sinar ultraviolet tidak selamanya bermanfaat. Lapisan ozon di atmosfer Bumi (pada lapisan atmosfer) berfungsi untuk mencegah supaya sinar ultraviolet tidak terlalu banyak sampai ke permukaan Bumi. Jika hal tersebut terjadi, akan menimbulkan berbagai penyakit pada manusia, terutama pada kulit. Sekarang, lapisan ozon telah berlubang-lubang sehingga banyak sinar ultraviolet yang tertahan untuk sampai ke permukaan Bumi. Berlubangnya lapisan ozon, di antaranya diakibatkan oleh penggunaan CFC (clorofluoro carbon) yang berlebihan, yang dihasilkan oleh kulkas atau mesin pengondisi udara (AC). Hal ini tentu saja dapat mengancam kehidupan makhluk hidup di Bumi. Oleh karena itu, diharapkan untuk mengurangi jumlah pemakaian yang menggunakan bahan CFC, seperti sekarang telah banyak mesin pendingin non CFC.
4. Sinar Tampak
Sinar tampak atau cahaya merupakan gelombang elektromagnetik yang dapat dilihat dan sangat membantu dalam penglihatan. Anda tidak akan dapat melihat apapun tanpa bantuan cahaya.
Ø  panjang gelombang         : 400 nm -700 nm.
Ø  Frekuensi               :  400-789 THzSinar
Ø  Manfaat                 : penggunaan sinar laser dalam serat optic pada bidang telekomunikasi dan kedokteran.
tampak terdiri atas tujuh spektrum warna, jika diurutkan dari frekuensi terkecil ke frekuensi terbesar, yaitu merah, jingga, kuning, hijau, biru, nila, dan ungu (disingkat mejikuhibiniu). Sinar tampak atau cahaya digunakan sebagai penerangan ketika di malam hari atau ditempat yang gelap. Selain sebagai penerangan, sinar tampak digunakan juga pada tempat-tempat hiburan, rumah sakit, industri, dan telekomunikasi.
5. Sinar Inframerah
Ø  frekuensi        : 1011 hertz -1014 hertz.
Ø  panjang gelombang :  10-4 cm -10-1 cm Sinar
Ø  manfaat        :
a.  Kesehatan
 Mengaktifkan molekul air dalam tubuh. Hal ini disebabkan karena inframerah mempunyai getaran yang sama dengan molekul air. Sehingga, ketika molekul tersebut pecah maka akan terbentuk molekul tunggal yang dapat meningkatkan cairan tubuh.
·         Meningkatkan sirkulasi mikro.
Bergetarnya molekul 
air dan pengaruh inframerah akan menghasilkan panas yang menyebabkan pembuluh kapiler membesar, dan meningkatkan temperaturkulit, memperbaiki sirkulasi darah dan mengurani tekanan jantung.
·         Meningkatkan metabolisme tubuh.
jika sirkulasi mikro dalam tubuh meningkat, 
racun dapat dibuang dari tubuh kita melalui metabolisme. Hal ini dapat mengurangi beban liver dan ginjal.
·         Mengembangkan Ph dalam tubuh.
Sinar inframerah dapat membersihkan 
darah, memperbaiki tekstur kulit dan mencegah rematik karena asam urat yang tinggi.
·         Inframerah jarak jauh banyak digunakan pada alat-alat kesehatan.
Pancaran panas yang berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai 
informasi kondisi kesehatan organ tersebut. Hal ini sangat bermanfaat bagi dokter dalam diagnosis kondisi pasien sehingga ia dapat membuat keputusan tindakan yang sesuai dengan kondisi pasien tersebut. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar. Contoh penggunaan inframerah yang menjadi trend saat ini adalah adanya gelang kesehatan Bio Fir. Dengan memanfaatkan inframerah jarak jauh, gelang tersebut dapat berperang dalam pembersihan dalam tubuh dan pembasmian kuman ataubakteri.
.

b.  Bidang komunikasi 

·         Adanya sistem sensor infra merah.
 Sistem sensor ini pada dasarnya menggunakan inframerah sebagai 
media komunikasi yang menghubungkan antara dua perangkat. Penerapan sistem sensor infra ini sangat bermanfaat sebagai pengendali jarak jauh, alarm keamanan, dan otomatisasi pada sistem. Adapun pemancar pada sistem ini terdiri atas sebuah LED (Lightemitting Diode)infra merah yang telah dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar inframerah, sedangkan pada bagian penerima biasanya terdapatfoto transistor, fotodioda, atau modulasi infra merah yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
·         Adanya kamera tembus pandang yang memanfaatkan sinar inframerah.
 Sinar inframerah memang tidak dapat ditangkap oleh mata telanjang manusia, namun sinar inframerah tersebut dapat ditangkap oleh 
kamera digital atau video handycam. Dengan adanya suatu teknologi yang berupa filter iR PF yang berfungi sebagai penerus cahaya infra merah, maka kemampuan kamera atau video tersebut menjadi meningkat. Teknologi ini juga telah diaplikasikan ke kamera handphone
·         Untuk pencitraan pandangan seperti nightscoop
·         Inframerah digunakan untuk komunikasi jarak dekat, seperti pada remote TV. Gelombang inframerah itu mudah untuk dibuat, harganya relatif murah, tidak dapat menembus tembok atau benda gelap, serta memiliki fluktuasi daya tinggi dan dapat diinterfensi oleh cahaya matahari.
·         Sebagai alat komunikasi pengontrol jarak jauh.
Inframerah dapat bekerja dengan jarak yang tidak terlalu jauh (kurang lebih 10 meter dan tidak ada penghalang)
·         Sebagai salah satu standardisasi komunikasi tanpa kabel.
Jadi, inframerah dapat dikatakan sebagai salah satu konektivitas yang berupa perangkat 
nirkabel yang digunakan untuk mengubungkan atau transfer data dari suatu perangkat ke parangkat lain. Penggunaan inframerah yang seperti ini dapat kita lihat pada handphone dan laptop yang memiliki aplikasiinframerah. Ketika kita ingin mengirim file ke handphone, maka bagian infra harus dihadapkan dengan modul infra merah pada PC. Selama proses pengiriman berlangsung, tidak boleh ada benda lain yang menghalangi. Fungsi inframerah pada handphone dan laptop dijalankan melalui teknologi IrDA (Infra red Data Acquition). IrDA dibentuk dengan tujuan untuk mengembangkan sistem komunikasi via inframerah.
6. Gelombang Mikro
Gelombang mikro dihasilkan oleh rangkaian elektronik yang disebut osilator.
Ø  Frekuensi       : 300 Mhz – 300 Ghz.
Ø  Panjang gelombag  :  1 meter – 1 mm Ghz.
Ø  Manfaat        :
1. Pemanasan
Kita tentu tidak asing dengan nama microwave oven yang sehari-hari kita pakai untuk memanaskan makanan. Microwave oven menggunakan gelombang mikro dalam band frekuensi ISM sekitar 2.45 GHz. Food processing hanyalah salah satu contoh saja yang sederhana. Gelombang mikro juga dimanfaatkan untuk pemanasan material dalam bidang industri. Pemanasan dengan gelombang mikro mempunyai kelebihan yaitu pemanasan lebih merata karena bukan mentransfer panas dari luar tetapi membangkitkan panas dari dalam bahan tersebut. Pemanasannya juga dapat bersifat selektif artinya tergantung dari dielektrik properties bahan. Hal ini akan menghemat energi untuk pemanasan. Misalkan dipakai untuk pemanasan bahan untuk body mobil maka chamber untuk pemanasan tidak akan panas tapi body mobil akan panas sesuai dengan yang kita inginkan. SIstem autoclave yang konvensional sangat boros energi karena chambernya ikut panas sehingga perlu proses pendinginan yang memakan energi juga. Dengan sifat selecting heating tersebut teknik pemanasan gelombang mikro juga dipakai untuk terapy kanker yang sering disebut dengan hyperthermia. Penngaturan daya dan perangcangan antena merupakan hal yang utama dari terapi ini. Fokus pemanasan pada volume sel kanker dapat dioptimasi ari perancangan antenna dan pengaturan daya serta jarak antena dengan sel kanker tersebut. 
2. Telekomunikasi
Bagi yang senang memanfaatkan fasilitas hotspot tentunya tidak asing dengan WiFi yang menggunakan band frekuensi ISM. Begitu juga yang gemar menggunakan bluetooth untuk transfer file antara handphone atau handphone dnegan komputer. Operator telekomunikasi juga memanfaatkan gelombang mikro untuk komunikasi antara BTS ataupun antara BTS dengan pelanggannya. di Eropa khususnya di Jerman sudah jarang terlihat penggunaan gelombang mikro untuk komunikasi dengan metode WDM antara BTS dengan BSC. Jaringan backbone komunikasi sudah memakai jarinagn fiber optis. Untuk komunikasi ke end user pada sistem selular tetap menggunakan gelombang mikro. Untuk di indonesia pada tower2 operator telekomunikasi sangat sering kita jumpai antena directional untuk komunikasi antara BTS . Untuk komunikasi ke end user operator GSM di indonesia memakai frekuensi di sekitar 800 MHz, 900MHz dan 1800MHz.
3. Radar dan navigasi
Radar juga memakai gelombang mikro untuk mendeteksi suatu object. Sesuai dengan namanya radio detection and ranging, radar memanfaatkan pantulan gelombang dari object tersebut untuk pendeteksian. meskipun sinyal sangat lemah tetapi dapat dikuatkan kembali sehingga object bisa terdeteksi. Radar biasa dipergunakan untuk mendeteksi benda bergerak. Pantulan tersebut berasal dari polarisasi horizontal, vertical maupun circular. Waktu antar transmit dan receive itu yang dipergunakan untuk mengitung jarak objek tersebut. pada sistem radar, pengolahan sinyal memainkan peranan yang penting untuk mengurangi interferens. Radar memancarkan dan menerima sinyal pantulan secara bergantian dengan sistem switch.Begitu juga dengan sistem GPS. GPS mempunyai prinsip yang mirip dengan radar. setiap satelit secara periodis mengirimkan pesan yang isinya adalah waktu pengiriman pesan dan informasi orbit satelit. receiver GPS akan menghitung jarak receiver dengan setiap satelit yang mengirimkan pesan2 tersebut. Dengan membandingkan jarak antara beberapa satelit ini dapat ditentukan letak gps receiver tersebut.
 Gelombang mikro disebut juga sebagai gelombang radio super high frequency. Gelombang mikro digunakan, di antaranya untuk komunikasi jarak jauh, radar (radio detection and ranging), dan memasak (oven). Di pangkalan udara, radar digunakan untuk mendeteksi dan memandu pesawat terbang untuk mendarat dalam keadaan cuaca buruk. Antena radar memiliki dua fungsi, yaitu sebagai pemancar gelombang dan penerima gelombang. Gelombang mikro yang dipancarkan dilakukan secara terarah dalam bentuk pulsa. Ketika pulsa dipancarkan dan mengenai suatu benda, seperti pesawat atau roket pulsa akan dipantulkan dan diterima oleh antena penerima, biasanya ditampilkan dalam osiloskop. Jika diketahui selang waktu antara pulsa yang dipancarkan dengan pulsa yang diterima Δdan kecepatan gelombang elektromagnetik = 3 × 108 m/s, jarak antara radar dan benda yang dituju (pesawat atau roket), dapat dituliskan dalam persamaan berikut
s = ½ c.Δt
dengan: = jarak antara radar dan benda yang dituju (m),
= kecepatan gelombang elektromagnetik (3 × 108 m/s), dan
Δt = selang waktu (s).
Angka 2 yang terdapat pada Persamaan muncul karena pulsa melakukan dua kali perjalanan, yaitu saat dipancarkan dan saat diterima. Saat ini radar sangat membantu dalam pendaratan pesawat terbang ketika terjadi cuaca buruk atau terjadi badai. Radar dapat berguna juga dalam mendeteksi adanya pesawat terbang atau benda asing yang terbang memasuki suatu wilayah tertentu.
7. Gelombang Radio
Mungkin Anda sudah tahu atau pernah mendengar gelombang ini. Gelombang radio banyak digunakan, terutama dalam bidang telekomunikasi, seperti handphone, televisi, dan radio. Di antara spektrum gelombang elektromagnetik, gelombang radio termasuk ke dalam spektrum yang memiliki panjang gelombang terbesar dan memiliki frekuensi paling kecil.
Ø  Frekuensi            : 104 Hz-108 Hz (paling kecil)
Ø  Panjang Gelombang   : (paling panjang)
Ø  Manfaat           :
1)    Gelombang radio (MF dan HF)
-Untuk komunikasi radio 
(memanfaatkan sifat  gelombang MF dan HF yang dapat dipantulkan oleh lapisan ionosfer, hingga dapat mencapai tempat yang jauh)
2) Gelombang radio (UHF dan VHF)
-Untuk komunikasi satelit
( memanfaatkan sifat gelombang  UHF dan VHF yang dapat menembus lapisan atmosfer (ionosfer), hingga dapat mencapai satelit)

gelombang radio dihasilkan oleh elektron pada kawat penghantar yang menimbulkan arus bolak-balik pada kawat. Kenyataannya arus bolak-balik yang terdapat pada kawat ini, dihasilkan oleh gelombang elektromagnetik. Gelombang radio ini dipancarkan dari antena pemancar (transmitter) dan diterima oleh antena penerima (receiver). Jika dibedakan berdasarkan frekuensinya, gelombang radio dibagi menjadi beberapa band frekuensi. Nama-nama band frekuensi beserta kegunaannya dapat Anda lihat pada tabel berikut ini.
Rentang Frekuensi Gelombang Radio
Nama Band
Singkatan
Frekuensi
Panjang Gelombang
Contoh Penggunaan
1. Extremely Low Frequency
ELF
(3 – 30) Hz
(105 – 104) km
Komunikasi dengan bawah laut
2. Super Low Frequency
SLF
(30 – 300) Hz
(104 – 103) km
Komunikasi dengan bawah laut
3. Ultra Low Frequency
ULF
(300 – 3000) Hz
(103 – 102) km
Komunikasi di dalam pertambangan
4. Very Low Frequency
VLF
(3 – 30) KHz
(102 – 104) km
Komunikasi di bawah laut
5. Low Frequency
LF
(30 – 300) KHz
(10 – 1) km
Navigasi
6. Medium Frequency
MF
(300 – 3000) KHz
(1 – 10–1) km
Siaran radio AM
7. High Frequency
HF
(3 – 30) MHz
(10–1 – 10–2) km
Radio amatir
8. Very High Frequency
VHF
(30 – 300) MHz
(10–2 – 10–3) km
Siaran radio FM dan televisi
9. Ultra High Frequency
UHF
(300 – 3000) MHz
(10–3 – 10–4) km
Televisi danhandphone
10. Super High Frequency
SHF
(3 – 30) GHz
(10–4 – 10–5) km
Wireless LAN
11. Extremely High Frequency
EHF
(30 – 300) GHz
(10–5 – 10–6) km
Radio astronomi
Jika dilihat dari perambatannya, gelombang radio yang dipancarkan oleh antena pemancar sebagian dipantulkan oleh lapisan ionosfer dan sebagian lagi diteruskan. Pada Gambar 9.5 berikut, menunjukkan perambatan gelombang radio frekuensi sedang dan frekuensi tinggi yang digunakan untuk siaran radio AM (amplitudo modulation) dan FM (frequency modulation) serta televisi.
Pancaran gelombang radio yang diteruskan dan dipantulkan oleh ionosfer.

Pada gambar tersebut terlihat bahwa frekuensi tinggi jangkauannya relatif lebih sempit jika dibandingkan dengan frekuensi sedang. Hal ini dapat terlihat bahwa frekuensi tinggi kebanyakan tidak dipantulkan oleh lapisan ionosfer. Dari penjelasan ini, Anda dapat mengetahui mengapa siaran radio FM hanya dapat didengar pada daerah tertentu. Ketika Anda berpindah ke tempat atau daerah lainnya nama stasiun radionya sudah berubah dan disesuaikan dengan daerahnya masing-masing. Berbeda halnya dengan radio AM, Jika Anda pergi dari tempat tinggal Anda ke tempat atau daerah lainnya, stasiun radionya masih tetap ada. Hal ini disebabkan oleh jangkauan frekuensi sedang lebih luas jika dibandingkan dengan jangkauan frekuensi tinggi.