#menubar{ width:900px; height:32px; background:#de360f; margin: 0 auto; } #menubar ul{ float:left; margin:0; padding:0; } #menubar li{ float:left; list-style:none; margin:0; padding:0; } #menubar li a, #menubar li a:link{ border-right:1px solid #F0512D; float:left; padding:8px 12px; color:#fff; text-decoration:none; font-size:13px; font-weight:bold; } #menubar li a:hover, #menubar li a:active, #menubar .current_page_item a { color:#ffa500; text-decoration:underline; } #menubar li li a, #menubar li li a:link, #menubar li li a:visited{ font-size: 12px; background: #de360f; color: #fff; text-decoration:none; width: 150px; padding: 0px 10px; line-height:30px; } #menubar li li a:hover, #menubar li li a:active { background: #F0512D; color: #ffa500; } #menubar li ul{ z-index:9999; position:absolute; left:-999em; height:auto; width:170px; margin-top:32px; border:1px solid ##F0512D; } #menubar li:hover ul, #menubar li li:hover ul, #menubar li li li:hover ul, #menubar li.sfhover ul, #menubar li li.sfhover ul, #menubar li li li.sfhover ul{ left:auto } #menubar li:hover, #menubar li.sfhover{ position:static }

Sabtu, 01 Maret 2014

manfaat gelombang elektromagnetik dalam kehidupa sehari-hari

Pemanfaatan Spektrum Gelombang Elektromagnetik dalam Kehidupan sehari-hari 
Jauh sebelum Maxwell meramalkan gelombang elektromagnetik, cahaya telah dipandang sebagai gelombang. Akan tetapi, tidak seorang pun tahu jenis gelombang apakah cahaya itu. Baru setelah adanya hasil perhitungan Maxwell tentang kecepatan gelombang elektromagnetik dan bukti eksperimen oleh Hertz, cahaya dikategorikan sebagai gelombang elektromagnetik. Tidak hanya cahaya yang termasuk gelombang elektromagnetik melainkan masih banyak lagi jenis-jenis yang termasuk gelombang elektromagnetik. Gelombang elektromagnetik telah dibangkitkan atau dideteksi pada jangkauan frekuensi yang lebar. Jika diurut dari frekuensi terbesar hingga frekuensi terkecil, yaitu sinar gamma, sinar-X, sinar ultraviolet, sinar tampak (cahaya), sinar inframerah, gelombang mikro (radar), gelombang televisi, dan gelombang radio. Gelombang-gelombang ini disebut spektrum gelombang elektromagnetik.
1. Sinar Gamma
Sinar gamma merupakan salah satu spektrum gelombang elektromagnetik yang memiliki frekuensi paling besar atau panjang gelombang terkecil.
v  Frekuensi                              : 1020 Hz sampai 1025 Hz.
v  Panjang gelombang            : Sinar gamma : 1020 - 1025 Hz
v  Manfaat                                 :   Sinar gamma mempunyai daya tembus sangat   tinggi, maka sinar gamma
digunakan dalam berbagai bidang antara lain:
a. industri, untuk mengetahui struktur logam
b. pertanian, untuk membuat bibit unggul
c. teknik nuklir, untuk membuat radio isotop
d. kedokteran, untuk terapi,diagnosis,
diantaranya untuk mengobati penyakit
  kanker dan mensterilkan peralatan rumah sakit. Selain itu, sinar gamma
  dapat digunakan untuk melihat kerusakan pada logam.

e. farmasi, untuk sterilisasi
   Sinar gamma dihasilkan dari peristiwa peluruhan inti radioaktif. Inti atom unsur yang tidak stabil meluruh menjadi inti atom unsur lain yang stabil dengan memancarkan sinar radioaktif, di antaranya sinar alfa, sinar beta, dan sinar gamma. Di antara ketiga sinar radioaktif ini, yang termasuk gelombang elektromagnetik adalah sinar gamma. Sementara dua lainnya merupakan berkas partikel bermuatan listrik. Jika dibandingkan dengan sinar alfa dan sinar beta, sinar gamma memiliki daya tembus yang paling tinggi sehingga dapat menembus pelat logam hingga beberapa sentimeter.
2. Sinar-X
Sinar-X, dikenal juga sebagai sinar Röntgen. Nama ini diambil dari penemunya, yaituWilhelm C. Röntgen (1845 – 1923). Sinar-X dihasilkan dari peristiwa tumbukan antara elektron yang dipercepat pada beda potensial tertentu.
Ø   Frekuensi                             : dalam rentang 30 petahertz - 30 exahertz
Ø  panjang gelombang             : berkisar antara 10 nanometer ke 100pikometer
Ø  Manfaat                  :
a. Bidang kesehatan
Dalam ilmu kedokteran, sinar x dapat digunakan untuk melihat kondisi tulang, gigi serta organ tubuh yang lain tanpa melakukun pembedahan langsung pada tubuh pasien. Biasanya, masyarakat awam menyebutnya dengan sebutan ‘’FOTO RONTGEN’’.
Selain itu, Sinar-X lembut digunakan untuk mengambil gambar foto yang dikenal sebagai radiograf. Sinar-X boleh menembusi badan manusia tetapi diserap oleh bahagian yang lebih tumpat seperti tulang. Gambar foto sinar-X digunakan untuk mengesan kecacatan tulang, mengesan tulang yang patah dan menyiasat keadaan organ-organ dalam badan.
Sinar-X keras digunakan untuk memusnahkan sel-sel kanser. Kaedah ini dikenal sebagai radioterapi.

b. bidang perindustrian
  Dalam bidang perindustrian, sinar-X boleh digunakan untuk
1. mengesan kecacatan dalam struktur binaan atau bahagian-bahagian dalam
  mesin dan enjin.
2. menyiasat rekahan dalam paip logam, dinding konkrit dan dandang tekanan
  tinggi
3. memeriksa retakan dalam struktur plastik dan getah.

c. Bidang kedokteran
Kedokteran nuklir merupakan cabang ilmu kedokteran yang menggunakan sumber radiasi terbuka berasal dari disintegrasi inti radionuklida buatan, untuk mempelajari perubahan fisiologi, anatomi dan biokimia, sehingga dapat digunakan untuk tujuan diagnostik, terapi dan penelitian kedokteran. Radioisotop dapat dimasukkan ke tubuh pasien (studi in­vivo) maupun hanya direaksikan saja dengan bahan biologis antara lain darah, cairan lambung, urine, dan sebagainya, yang diambil dari tubuh pasien, yang lebih dikenal sebagai studi in­vitro (dalam gelas percobaan).Pada studi in­vivo, setelah radioisotop dapat dimasukkan ke tubuh pasien melalui mulut, suntikan, atau dihirup lewat hidung, maka informasi yang dapat diperoleh dari pasien. disamping citra atau gambar yang diperoleh dengan kamera gamma ataupun kamera 
   
3. Sinar Ultraviolet
Sinar ultraviolet dihasilkan dari radiasi sinar Matahari. Selain itu, dapat juga dihasilkan dari transisi elektron dalam orbit atom.
Ø  Frekuensi          : 105 hertz - 1016 hertz.
Ø  Panjang gelobang : 10-8 m 10-7 m.
Ø  Manfaat       :
1. Sumber utama vitamin D.
Sinar ultraviolet ternyata membantu mengubah kolesterol yang tersimpan di kulit menjadi vitamin D. Hanya dengan berjemur selama 5 menit di pagi hari, tubuh kita mendapatkan 400 unit vitamin D.
 2. Mengurangi kolesterol darah.
Proses pembentukan 
vitamin D dimana mengubah kolesterol di dalam darah maka akan mengurangi kadar kolesterol dalam tubuh kita.
3. Penawar infeksi dan pembunuh bakteri.
Sinar ultraviolet ternyata juga membantu membasmi virus-virus penyebab kanker. Secara umum, sinar matahari mampu membunuh bakteri, virus, dan jamur yang berpotensi menyebabkan TBC, peritonitis, pneumonia, dan asma saluran pernapasan.
4. Mengurangi gula darah.
Sinar matahari membantu penyerapan glukosa ke dalam sel-sel tubuh yang merangsang glukosa menjadi glikogen sehingga secara langsung berperan menurunkan kadar gula darah dalam tubuh kita.
5. Meningkatkan kebugaran pernafasan.
Penambahan glikogen di otot dan hati melalui sinar matahari ternyata meningkatkan perbaikan sistem pernafasan karena meningkatkan kemampuan darah dalam menyalurkan oksigen ke seluruh jaringan tubuh.
6. Membantu membentuk dan memperbaiki tulang.
Vitamin D yang dibentuk melalui sinar matahari berfungsi meningkatkan penyerapan kalsium oleh tubuh sehingga memperbaiki komponen tulang dan mencegah penyakit rakhitis, osteoporosis, dan osteomalacia.
7. Meningkatkan kekebalan tubuh.
Sinar matahari mampu meningkatkan antibodi dalam tubuh dengan membentuk sel darah putih untuk melawan substansi asing yang merugikan di dalam tubuh. Membaiknya sistem pernafasan melalui sinar matahari juga berperan dalam membasmi kuman-kuman secara lebih cepat. Selain itu, sinar matahari juga mampu menurunkan potensi terjangkit flu hingga 30-40 persen.
Sinar ultraviolet tidak selamanya bermanfaat. Lapisan ozon di atmosfer Bumi (pada lapisan atmosfer) berfungsi untuk mencegah supaya sinar ultraviolet tidak terlalu banyak sampai ke permukaan Bumi. Jika hal tersebut terjadi, akan menimbulkan berbagai penyakit pada manusia, terutama pada kulit. Sekarang, lapisan ozon telah berlubang-lubang sehingga banyak sinar ultraviolet yang tertahan untuk sampai ke permukaan Bumi. Berlubangnya lapisan ozon, di antaranya diakibatkan oleh penggunaan CFC (clorofluoro carbon) yang berlebihan, yang dihasilkan oleh kulkas atau mesin pengondisi udara (AC). Hal ini tentu saja dapat mengancam kehidupan makhluk hidup di Bumi. Oleh karena itu, diharapkan untuk mengurangi jumlah pemakaian yang menggunakan bahan CFC, seperti sekarang telah banyak mesin pendingin non CFC.
4. Sinar Tampak
Sinar tampak atau cahaya merupakan gelombang elektromagnetik yang dapat dilihat dan sangat membantu dalam penglihatan. Anda tidak akan dapat melihat apapun tanpa bantuan cahaya.
Ø  panjang gelombang         : 400 nm -700 nm.
Ø  Frekuensi               :  400-789 THzSinar
Ø  Manfaat                 : penggunaan sinar laser dalam serat optic pada bidang telekomunikasi dan kedokteran.
tampak terdiri atas tujuh spektrum warna, jika diurutkan dari frekuensi terkecil ke frekuensi terbesar, yaitu merah, jingga, kuning, hijau, biru, nila, dan ungu (disingkat mejikuhibiniu). Sinar tampak atau cahaya digunakan sebagai penerangan ketika di malam hari atau ditempat yang gelap. Selain sebagai penerangan, sinar tampak digunakan juga pada tempat-tempat hiburan, rumah sakit, industri, dan telekomunikasi.
5. Sinar Inframerah
Ø  frekuensi        : 1011 hertz -1014 hertz.
Ø  panjang gelombang :  10-4 cm -10-1 cm Sinar
Ø  manfaat        :
a.  Kesehatan
 Mengaktifkan molekul air dalam tubuh. Hal ini disebabkan karena inframerah mempunyai getaran yang sama dengan molekul air. Sehingga, ketika molekul tersebut pecah maka akan terbentuk molekul tunggal yang dapat meningkatkan cairan tubuh.
·         Meningkatkan sirkulasi mikro.
Bergetarnya molekul 
air dan pengaruh inframerah akan menghasilkan panas yang menyebabkan pembuluh kapiler membesar, dan meningkatkan temperaturkulit, memperbaiki sirkulasi darah dan mengurani tekanan jantung.
·         Meningkatkan metabolisme tubuh.
jika sirkulasi mikro dalam tubuh meningkat, 
racun dapat dibuang dari tubuh kita melalui metabolisme. Hal ini dapat mengurangi beban liver dan ginjal.
·         Mengembangkan Ph dalam tubuh.
Sinar inframerah dapat membersihkan 
darah, memperbaiki tekstur kulit dan mencegah rematik karena asam urat yang tinggi.
·         Inframerah jarak jauh banyak digunakan pada alat-alat kesehatan.
Pancaran panas yang berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai 
informasi kondisi kesehatan organ tersebut. Hal ini sangat bermanfaat bagi dokter dalam diagnosis kondisi pasien sehingga ia dapat membuat keputusan tindakan yang sesuai dengan kondisi pasien tersebut. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar. Contoh penggunaan inframerah yang menjadi trend saat ini adalah adanya gelang kesehatan Bio Fir. Dengan memanfaatkan inframerah jarak jauh, gelang tersebut dapat berperang dalam pembersihan dalam tubuh dan pembasmian kuman ataubakteri.
.

b.  Bidang komunikasi 

·         Adanya sistem sensor infra merah.
 Sistem sensor ini pada dasarnya menggunakan inframerah sebagai 
media komunikasi yang menghubungkan antara dua perangkat. Penerapan sistem sensor infra ini sangat bermanfaat sebagai pengendali jarak jauh, alarm keamanan, dan otomatisasi pada sistem. Adapun pemancar pada sistem ini terdiri atas sebuah LED (Lightemitting Diode)infra merah yang telah dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar inframerah, sedangkan pada bagian penerima biasanya terdapatfoto transistor, fotodioda, atau modulasi infra merah yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
·         Adanya kamera tembus pandang yang memanfaatkan sinar inframerah.
 Sinar inframerah memang tidak dapat ditangkap oleh mata telanjang manusia, namun sinar inframerah tersebut dapat ditangkap oleh 
kamera digital atau video handycam. Dengan adanya suatu teknologi yang berupa filter iR PF yang berfungi sebagai penerus cahaya infra merah, maka kemampuan kamera atau video tersebut menjadi meningkat. Teknologi ini juga telah diaplikasikan ke kamera handphone
·         Untuk pencitraan pandangan seperti nightscoop
·         Inframerah digunakan untuk komunikasi jarak dekat, seperti pada remote TV. Gelombang inframerah itu mudah untuk dibuat, harganya relatif murah, tidak dapat menembus tembok atau benda gelap, serta memiliki fluktuasi daya tinggi dan dapat diinterfensi oleh cahaya matahari.
·         Sebagai alat komunikasi pengontrol jarak jauh.
Inframerah dapat bekerja dengan jarak yang tidak terlalu jauh (kurang lebih 10 meter dan tidak ada penghalang)
·         Sebagai salah satu standardisasi komunikasi tanpa kabel.
Jadi, inframerah dapat dikatakan sebagai salah satu konektivitas yang berupa perangkat 
nirkabel yang digunakan untuk mengubungkan atau transfer data dari suatu perangkat ke parangkat lain. Penggunaan inframerah yang seperti ini dapat kita lihat pada handphone dan laptop yang memiliki aplikasiinframerah. Ketika kita ingin mengirim file ke handphone, maka bagian infra harus dihadapkan dengan modul infra merah pada PC. Selama proses pengiriman berlangsung, tidak boleh ada benda lain yang menghalangi. Fungsi inframerah pada handphone dan laptop dijalankan melalui teknologi IrDA (Infra red Data Acquition). IrDA dibentuk dengan tujuan untuk mengembangkan sistem komunikasi via inframerah.
6. Gelombang Mikro
Gelombang mikro dihasilkan oleh rangkaian elektronik yang disebut osilator.
Ø  Frekuensi       : 300 Mhz – 300 Ghz.
Ø  Panjang gelombag  :  1 meter – 1 mm Ghz.
Ø  Manfaat        :
1. Pemanasan
Kita tentu tidak asing dengan nama microwave oven yang sehari-hari kita pakai untuk memanaskan makanan. Microwave oven menggunakan gelombang mikro dalam band frekuensi ISM sekitar 2.45 GHz. Food processing hanyalah salah satu contoh saja yang sederhana. Gelombang mikro juga dimanfaatkan untuk pemanasan material dalam bidang industri. Pemanasan dengan gelombang mikro mempunyai kelebihan yaitu pemanasan lebih merata karena bukan mentransfer panas dari luar tetapi membangkitkan panas dari dalam bahan tersebut. Pemanasannya juga dapat bersifat selektif artinya tergantung dari dielektrik properties bahan. Hal ini akan menghemat energi untuk pemanasan. Misalkan dipakai untuk pemanasan bahan untuk body mobil maka chamber untuk pemanasan tidak akan panas tapi body mobil akan panas sesuai dengan yang kita inginkan. SIstem autoclave yang konvensional sangat boros energi karena chambernya ikut panas sehingga perlu proses pendinginan yang memakan energi juga. Dengan sifat selecting heating tersebut teknik pemanasan gelombang mikro juga dipakai untuk terapy kanker yang sering disebut dengan hyperthermia. Penngaturan daya dan perangcangan antena merupakan hal yang utama dari terapi ini. Fokus pemanasan pada volume sel kanker dapat dioptimasi ari perancangan antenna dan pengaturan daya serta jarak antena dengan sel kanker tersebut. 
2. Telekomunikasi
Bagi yang senang memanfaatkan fasilitas hotspot tentunya tidak asing dengan WiFi yang menggunakan band frekuensi ISM. Begitu juga yang gemar menggunakan bluetooth untuk transfer file antara handphone atau handphone dnegan komputer. Operator telekomunikasi juga memanfaatkan gelombang mikro untuk komunikasi antara BTS ataupun antara BTS dengan pelanggannya. di Eropa khususnya di Jerman sudah jarang terlihat penggunaan gelombang mikro untuk komunikasi dengan metode WDM antara BTS dengan BSC. Jaringan backbone komunikasi sudah memakai jarinagn fiber optis. Untuk komunikasi ke end user pada sistem selular tetap menggunakan gelombang mikro. Untuk di indonesia pada tower2 operator telekomunikasi sangat sering kita jumpai antena directional untuk komunikasi antara BTS . Untuk komunikasi ke end user operator GSM di indonesia memakai frekuensi di sekitar 800 MHz, 900MHz dan 1800MHz.
3. Radar dan navigasi
Radar juga memakai gelombang mikro untuk mendeteksi suatu object. Sesuai dengan namanya radio detection and ranging, radar memanfaatkan pantulan gelombang dari object tersebut untuk pendeteksian. meskipun sinyal sangat lemah tetapi dapat dikuatkan kembali sehingga object bisa terdeteksi. Radar biasa dipergunakan untuk mendeteksi benda bergerak. Pantulan tersebut berasal dari polarisasi horizontal, vertical maupun circular. Waktu antar transmit dan receive itu yang dipergunakan untuk mengitung jarak objek tersebut. pada sistem radar, pengolahan sinyal memainkan peranan yang penting untuk mengurangi interferens. Radar memancarkan dan menerima sinyal pantulan secara bergantian dengan sistem switch.Begitu juga dengan sistem GPS. GPS mempunyai prinsip yang mirip dengan radar. setiap satelit secara periodis mengirimkan pesan yang isinya adalah waktu pengiriman pesan dan informasi orbit satelit. receiver GPS akan menghitung jarak receiver dengan setiap satelit yang mengirimkan pesan2 tersebut. Dengan membandingkan jarak antara beberapa satelit ini dapat ditentukan letak gps receiver tersebut.
 Gelombang mikro disebut juga sebagai gelombang radio super high frequency. Gelombang mikro digunakan, di antaranya untuk komunikasi jarak jauh, radar (radio detection and ranging), dan memasak (oven). Di pangkalan udara, radar digunakan untuk mendeteksi dan memandu pesawat terbang untuk mendarat dalam keadaan cuaca buruk. Antena radar memiliki dua fungsi, yaitu sebagai pemancar gelombang dan penerima gelombang. Gelombang mikro yang dipancarkan dilakukan secara terarah dalam bentuk pulsa. Ketika pulsa dipancarkan dan mengenai suatu benda, seperti pesawat atau roket pulsa akan dipantulkan dan diterima oleh antena penerima, biasanya ditampilkan dalam osiloskop. Jika diketahui selang waktu antara pulsa yang dipancarkan dengan pulsa yang diterima Δdan kecepatan gelombang elektromagnetik = 3 × 108 m/s, jarak antara radar dan benda yang dituju (pesawat atau roket), dapat dituliskan dalam persamaan berikut
s = ½ c.Δt
dengan: = jarak antara radar dan benda yang dituju (m),
= kecepatan gelombang elektromagnetik (3 × 108 m/s), dan
Δt = selang waktu (s).
Angka 2 yang terdapat pada Persamaan muncul karena pulsa melakukan dua kali perjalanan, yaitu saat dipancarkan dan saat diterima. Saat ini radar sangat membantu dalam pendaratan pesawat terbang ketika terjadi cuaca buruk atau terjadi badai. Radar dapat berguna juga dalam mendeteksi adanya pesawat terbang atau benda asing yang terbang memasuki suatu wilayah tertentu.
7. Gelombang Radio
Mungkin Anda sudah tahu atau pernah mendengar gelombang ini. Gelombang radio banyak digunakan, terutama dalam bidang telekomunikasi, seperti handphone, televisi, dan radio. Di antara spektrum gelombang elektromagnetik, gelombang radio termasuk ke dalam spektrum yang memiliki panjang gelombang terbesar dan memiliki frekuensi paling kecil.
Ø  Frekuensi            : 104 Hz-108 Hz (paling kecil)
Ø  Panjang Gelombang   : (paling panjang)
Ø  Manfaat           :
1)    Gelombang radio (MF dan HF)
-Untuk komunikasi radio 
(memanfaatkan sifat  gelombang MF dan HF yang dapat dipantulkan oleh lapisan ionosfer, hingga dapat mencapai tempat yang jauh)
2) Gelombang radio (UHF dan VHF)
-Untuk komunikasi satelit
( memanfaatkan sifat gelombang  UHF dan VHF yang dapat menembus lapisan atmosfer (ionosfer), hingga dapat mencapai satelit)

gelombang radio dihasilkan oleh elektron pada kawat penghantar yang menimbulkan arus bolak-balik pada kawat. Kenyataannya arus bolak-balik yang terdapat pada kawat ini, dihasilkan oleh gelombang elektromagnetik. Gelombang radio ini dipancarkan dari antena pemancar (transmitter) dan diterima oleh antena penerima (receiver). Jika dibedakan berdasarkan frekuensinya, gelombang radio dibagi menjadi beberapa band frekuensi. Nama-nama band frekuensi beserta kegunaannya dapat Anda lihat pada tabel berikut ini.
Rentang Frekuensi Gelombang Radio
Nama Band
Singkatan
Frekuensi
Panjang Gelombang
Contoh Penggunaan
1. Extremely Low Frequency
ELF
(3 – 30) Hz
(105 – 104) km
Komunikasi dengan bawah laut
2. Super Low Frequency
SLF
(30 – 300) Hz
(104 – 103) km
Komunikasi dengan bawah laut
3. Ultra Low Frequency
ULF
(300 – 3000) Hz
(103 – 102) km
Komunikasi di dalam pertambangan
4. Very Low Frequency
VLF
(3 – 30) KHz
(102 – 104) km
Komunikasi di bawah laut
5. Low Frequency
LF
(30 – 300) KHz
(10 – 1) km
Navigasi
6. Medium Frequency
MF
(300 – 3000) KHz
(1 – 10–1) km
Siaran radio AM
7. High Frequency
HF
(3 – 30) MHz
(10–1 – 10–2) km
Radio amatir
8. Very High Frequency
VHF
(30 – 300) MHz
(10–2 – 10–3) km
Siaran radio FM dan televisi
9. Ultra High Frequency
UHF
(300 – 3000) MHz
(10–3 – 10–4) km
Televisi danhandphone
10. Super High Frequency
SHF
(3 – 30) GHz
(10–4 – 10–5) km
Wireless LAN
11. Extremely High Frequency
EHF
(30 – 300) GHz
(10–5 – 10–6) km
Radio astronomi
Jika dilihat dari perambatannya, gelombang radio yang dipancarkan oleh antena pemancar sebagian dipantulkan oleh lapisan ionosfer dan sebagian lagi diteruskan. Pada Gambar 9.5 berikut, menunjukkan perambatan gelombang radio frekuensi sedang dan frekuensi tinggi yang digunakan untuk siaran radio AM (amplitudo modulation) dan FM (frequency modulation) serta televisi.
Pancaran gelombang radio yang diteruskan dan dipantulkan oleh ionosfer.

Pada gambar tersebut terlihat bahwa frekuensi tinggi jangkauannya relatif lebih sempit jika dibandingkan dengan frekuensi sedang. Hal ini dapat terlihat bahwa frekuensi tinggi kebanyakan tidak dipantulkan oleh lapisan ionosfer. Dari penjelasan ini, Anda dapat mengetahui mengapa siaran radio FM hanya dapat didengar pada daerah tertentu. Ketika Anda berpindah ke tempat atau daerah lainnya nama stasiun radionya sudah berubah dan disesuaikan dengan daerahnya masing-masing. Berbeda halnya dengan radio AM, Jika Anda pergi dari tempat tinggal Anda ke tempat atau daerah lainnya, stasiun radionya masih tetap ada. Hal ini disebabkan oleh jangkauan frekuensi sedang lebih luas jika dibandingkan dengan jangkauan frekuensi tinggi.

Spektrum Gelombang Elektromagnetik

Gelombang elektromagnetik yang dirumuskan oleh Maxwell ternyata terbentang dalam rentang frekuensi yang luas. Sebagai sebuah gejala gelombang, gelombang elektromagnetik dapat diidentifikasi berdasarkan frekuensi dan panjang gelombangnya. Cahaya merupakan gelombang elektromagnetik sebagaimana gelombang radio atau sinar-X. Masing-masing memiliki penggunaan yang berbeda meskipun mereka secara fisika menggambarkan gejala yang serupa, yaitu gejala gelombang, lebih khusus lagi gelombang elektromagnetik. Mereka dibedakan berdasarkan frekuensi dan panjang gelombangnya. Gambar berikut ini menunjukkan spektrum gelombang elektromagnetik.
spektrum gelombang elektromagnetik
spektrum gelombang elektromagnetik
Gelombang Radio
Tentu kamu sering menonton TV, mendengarkan radio, atau menggunakan ponsel untuk berkomunikasi, bukan? Nah, semua peralatan elektronik itu menggunakan gelombang radio sebagai perambatan sinyalnya.
man-on-phoneGelombang radio merupakan gelombang yang memiliki frekuensi paling kecil atau panjang gelombang paling panjang. Gelombang radio berada dalam rentang frekuensi yang luas meliputi beberapa Hz sampai gigahertz (GHz atau orde pangkat 9). Gelombang ini dihasilkan oleh alat-alat elektronik berupa rangkaian osilator (variasi dan gabungan dari komponen Resistor (R), induktor (L), dan kapasitor (C)). Oleh karena itu, gelombang radio banyak digunakan dalam sistem telekomunikasi. Siaran TV, radio, dan jaringan telepon seluler menggunakan gelombang dalam rentang gelombang radio ini.
Suatu sistem telekomunikasi yang menggunakan gelombang radio sebagai pembawa sinyal informasinya pada dasarnya terdiri dari antena pemancar dan antena penerima. Sebelum dirambatkan sebagai gelombang radio, sinyal informasi dalam berbagai bentuknya (suara pada sistem radio, suara dan data pada sistem seluler, atau suara dan gambar pada sistem TV) terlebih dahulu dimodulasi. Modulasi di sini secara sederhana dinyatakan sebagai penggabungan antara getaran listrik informasi (misalnya suara pada sistem radio) dengan gelombang pembawa frekuensi radio tersebut. Penggabungan ini menghasilkan gelombang radio termodulasi. Gelombang inilah yang dirambatkan melalui ruang dari pemancar menuju penerima.
Oleh karena itu, kita mengenal adanya istilah AM dan FM. Amplitudo modulation (AM) atau modulasi amplitudo menggabungkan getaran listrik dan getaran pembawa berupa perubahan amplitudonya. Adapun frequency modulation (FM) atau modulasi frekuensi menggabungkan getaran listrik dan getaran pembawa dalam bentuk perubahan frekuensinya.

Gelombang Mikro
oven microwave
oven microwave
Pernahkah kamu mendengar tentang alat elektronik berupa oven microwave? Atau, kamu mungkin sudah pernah menggunakannya untuk memasak? Oven microwave menggunakan sifat-sifat gelombang mikro (microwave) berupa efek panas untuk memasak. Selain itu, gelombang mikro juga digunakan dalam sistem komunikasi radar dan analisis struktur atom dan molekul.
Rentang frekuensi gelombang mikro membentang dari 3 GHz hingga 300 GHz. Frekuensi sebesar ini dihasilkan dari rangkaian osilator pada alat-alat elektronik. Gelombang mikro dapat diserap oleh suatu benda dan menimbulkan efek pemanasan pada benda tersebut. Sebuah sistem pemanas berbasis microwave dapat memanfaatkan gejala ini untuk memasak benda. Sistem semacam ini digunakan dalam oven microwave yang dapat mematangkan makanan di dalamnya secara merata dan dalam waktu singkat (cepat).
Dalam suatu sistem radar, gelombang mikro dipancarkan terus menerus ke segala arah oleh pemancar. Jika ada objek yang terkena gelombang ini, sinyal akan dipantulkan oleh objek dan diterima kembali oleh penerima. Sinyal pantulan ini akan memberikan informasi bahwa ada objek yang dekat yang akan ditampilkan oleh layar radar.
antena radar
antena radar
Dari waktu pemancaran sinyal sampai diterima kembali oleh radar, jarak objek yang terdeteksi dapat diketahui. Tentu kamu dapat membayangkan rumus yang dapat dipakai untuk menghitung jarak ini, bukan? Ya, jarak adalah kecepatan dikali waktu, dan karena kecepatan gelombang adalah konstan, maka dengan mengetahui waktu, jarak pun dapat dihitung. Jangan lupa bahwa pembagian dengan faktor 2 diperlukan karena sinyal menempuh jarak pulang pergi. Coba kamu tuliskan rumusnya.
Sistem radar banyak dimanfaatkan oleh pesawat terbang dan kapal selam. Dengan adanya radar, pesawat terbang dan kapal selam mampu mendeteksi keberadaan objek lain yang dekat dengan mereka. Di saat cuaca buruk di mana terjadi badai dan gangguan cuaca yang dapat mengganggu pengelihatan, keberadaan radar dapat membantu navigasi pesawat terbang untuk mengetahui arah dan posisi mereka dari tempat tujuan pendaratan.
Sinar Inframerah
Bagaimana remote TV dapat digunakan untuk mematikan atau menyalakan TV? Di sini remote menggunakan pemancar dan penerima sinar inframerah. Tahukah kamu bahwa ada ponsel yang dilengkapi dengan inframerah untuk transfer data dari atau menuju ponsel?
Sinar inframerah (infrared/IR) termasuk dalam gelombang elektromagnetik dan berada dalam rentang frekuensi 300 GHz sampai 40.000 GHz (10 pangkat 13). Sinar inframerah dihasilkan oleh proses di dalam molekul dan benda panas. Telah lama diketahui bahwa benda panas akibat aktivitas (getaran) atomik dan molekuler di dalamnya dianggap memancarkan gelombang panas dalam bentuk sinar inframerah. Oleh karena itu, sinar inframerah sering disebut radiasi panas.
Foto inframerah yang bekerja berdasarkan pancaran panas suatu objek dapat digunakan untuk membuat lukisan panas dari suatu daerah atau objek. Hasil lukisan panas dapat menggambarkan daerah mana yang panas dan tidak. Suatu lukisan panas dari satu gedung dapat digunakan untuk mengetahui daerah mana dari gedung itu yang menghasilkan panas berlebihan sehingga dapat dilakukan perbaikan-perbaikan yang diperlukan.
Dalam bidang kesehatan, pancaran panas berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai informasi kondisi kesehatan organ tersebut. Ini sangat bermanfaat bagi dokter dalam diagnosis dan keputusan tindakan yang sesuai buat pasien. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar dan encok.
hasil citra foto inframerah terhadap tubuh manusia untuk pemeriksaan kesehatan
hasil citra foto inframerah terhadap tubuh manusia untuk pemeriksaan kesehatan
Dalam teknologi elektronik, sinar inframerah telah lama digunakan sebagai media transfer data. Ponsel dan laptop dilengkapi dengan inframerah sebagai salah konektivitas untuk menghubungkan atau transfer data dari satu perangkat dengan perangkat lain. Fungsi inframerah pada ponsel dan laptop dijalankan melalui teknologi Irda (infra red data acquitition).
Cahaya atau sinar tampak
Dalam rentang spektrum gelombang elektromagnetik, cahaya atau sinar tampak hanya menempati pita sempit di atas sinar inframerah. Spektrum frekuensi sinar tampak berisi frekuensi dimana mata manusia peka terhadapnya. Frekuensi sinar tampak membentang antara 40.000 dan 80.000 GHz (10 pangkat 13) atau bersesuaian dengan panjang gelombang antara 380 dan 780 nm (10 pangkat -9). Cahaya yang kita rasakan sehari-hari berada dalam rentang frekuensi ini. cahaya juga dihasilkan melalui proses dalam skala atom dan molekul berupa pengaturan internal dalam konfigurasi elektron.
Pembahasan tentang cahaya begitu luas dan membentuk satu disiplin ilmu fisika tersendiri, yaitu optik.
Sinar Ultraviolet
Rentang frekuensi sinar ultraviolet (ultraungu) membentang dalam kisaran 80.000 GHz sampai puluhan juta GHz (10 pangkat 17).
Sinar ultraungu atau disebut juga sinar ultraviolet datang dari matahari berupa radiasi ultraviolet memiliki energi yang cukup kuat dan dapat mengionisasi atom-atom yang berada di lapisan atmosfer. Dari proses ionisasi atom-atom tersebut dihasilkan ion-ion, yaitu atom yang bermuatan listrik. Lapisan yang terdiri dari ion-ion ini membentuk lapisan khusus dalam atmosfer yang disebut ionosfer. Lapisan ionosfer yang terisi dengan atom-atom bermuatan listrik ini dapat memantulkan gelombang elektromagnetik frekuensi rendah (berada dalam spektrum frekuensi gelombang radio medium) dan dimanfaatkan dalam transmisi radio.
Karena energinya yang cukup kuat dan sifatnya yang dapat mengionisasi bahan, sinar ultraviolet tergolong sebagai radiasi yang berbahaya bagi manusia (terutama jika terpancar dalam intensitas yang besar). Untungnya, atmosfer bumi memiliki lapisan yang dapat menahan dan menyerap radiasi ultraviolet dari matahari sehingga sinar matahari yang sampai ke bumi berada dalam taraf yang tidak berbahaya. Tentu kamu sudah tahu lapisan apakah itu? ya, lapisan ozon.
lapisan ozon di atmosfer menahan sebagian radiasi ultraviolet
lapisan ozon di atmosfer menahan sebagian radiasi ultraviolet
Penggunaan bahan kimia baik untuk pendingin (lemari es dan AC) berupa freon maupun untuk penyemprot (parfum bentuk spray dan pilok/penyemprot cat), dapat menyebabkan kebocoran lapisan ozon. Hal ini menyebabkan sinar ultraviolet dapat menembus lapisan ozon dan sampai ke permukaan bumi, suatu hal yang sangat berbahaya buat manusia. Jika semakin banyak sinar ultraviolet yang terpapar ke permukaan bumi dan mengenai manusia, efek yang tidak diinginkan bagi manusia dan lingkungan dapat timbul.
gas untuk spray menyebabkan lubang di lapisan ozon
gas untuk spray menyebabkan lubang di lapisan ozon
Kanker kulit dan penyakit gangguan penglihatan seperti katarak dapat ditimbulkan dari radiasi ultraviolet yang berlebihan. Ganggang hijau sebagai sumber makanan alami dan mata rantai pertama dalam rantai makanan dapat berkurang akibat radiasi ultraviolet ini. ini dapat mengganggu keseimbangan alam dan merupakan sesuatu yang sangat merugikan buat kehidupan makhluk hidup di Bumi.
Sinar ultraviolet juga dapat dihasilkan oleh proses internal atom dan molekul. Sinar ultraviolet juga dapat dimanfaatkan dalam proses sterilisasi makanan dimana kuman dan bakteri berbahaya di dalam makanan dapat dimatikan.
Sinar-X
Sinar-X dikenal luas dalam dunia kedokteran sebagai sinar Rontgen. Dipakai untuk memeriksa organ bagian dalam tubuh. Tulang yang retak di bagian dalam tubuh dapat terlihat menggunakan sinar-X ini.
Sinar-X berada pada rentang frekuensi 300 juta GHz (10 pangkat 17) dan 50 miliar GHz (10 pangkat 19). Penemuan sinar-X dianggap sebagai salah satu penemuan penting dalam fisika. Sinar-X ditemukan oleh ahli fisika Jerman bernama Wilhelm Rontgen saat sedang mempelajari sinar katoda. Cara paling umum untuk memproduksi sinar-X adalah melalui mekanisme yang disebut bremstrahlung atau radiasi perlambatan. Mekanisme ini yang ditempuh oleh Rontgen saat pertama kali menghasilkan sinar-X. Dalam teori radiasi gelombang elektromagnetik diketahui bahwa muatan listrik yang dipercepat (atau diperlambat) akan menghasilkan gelombang elektromagnetik. Selain melalui radiasi perlambatan, sinar-X juga dihasilkan dari proses transisi internal elektron di dalam atom atau molekul.
foto hasil penyinaran sinar-X
Sinar Gamma
produksi sinar gamma oleh inti atom
produksi sinar gamma oleh inti atom
Sinar gamma merupakan gelombang elektromagnetik yang memiliki frekuensi (dan karenanya juga energi) yang paling besar. Sinar gamma memiliki rentang frekuensi dari 10 pangkat 18 sampai 10 pangkat 22 Hz. Sinar gamma dihasilkan melalui proses di dalam inti atom (nuklir).

Kamis, 09 Januari 2014

efek rumah kaca

Pengertian Global Warming, Dampak dan Cara Mencegah Global Warming

Pengertian Global Warming – Mungkin sebagian besar dari anda sudah tidak asing dengan istilah Global Warming. Akhir-akhir ini makin marak kampanye Stop Global Warming baik di TV maupun poster-poster di jalanan. Tapi tahukah anda, apa pengertian Global Warming tersebut?

Global Warming atau yang dalam bahasa Indonesia biasa disebut dengan pemanasan global ialah suatu proses yang ditandai dengan meningkatnya suhu rata-rata permukaan bumi, laut maupun atmosfer. Kenapa hal ini bisa terjadi? Apa saja dampak buruk global warming ini? Bagaimana pula cara untuk mengendalikan pemanasan global atau global warming tersebut? Simak pembahasan berikut.
Penyebab Global Warming

Perlu anda ketahui bahwa suhu rata-rata permukaan di bumi ini meningkat 0.74 ± 0.18 °C dalam waktu 100 tahun terakhir ini. Kenapa ini bisa terjadi? Berikut adalah beberapa penyebab utama terjadinya Global Warming:
1. Efek Rumah Kaca

Semua sumber energi yang ada di bumi ini berasal dari energi Matahari yang sebagian besar berupa radiasi gelombang pendek. Ketika energi tersebut dampai di Bumi, ia akan berubah menjadi panas yang bisa menghangatkan bumi. Namun tidak semua panas yang sampai di bumi akan diserap, sebagian lagi akan dipantulkan kembali ke luar angkasa. Namun sebagian dari panas yang dipantulkan ini tetap terperangkap di dalam atmosfer bumi karena menumpuknya gas rumah kaca (Karbon Dioksida, Metana, Sulfur Dioksida dan uap air). Hal ini terjadi karena gas-gas tersebut mampu menyerap dan memantulkan energi panas dalam bentuk radiasi gelombang yang dipancarkan bumi. Akibatnya energi panas tadi akan terus tersimpan di permukaan bumi. Proses ini terus terjadi dari waktu ke waktu, dan akibatnya suhu rata-rata permukaan bumi pun terus meningkat.
2. Efek Umpan Balik

Salah satu penyebab Global Warming adalah adanya efek umpan balik. Contoh terjadinya efek umpan balik ini adalah pada proses penguapan air. Meningkatnya suhu rata-rata permukaan bumi serta lautan akan menyebabkan meningkatnya penguapan air ke atmosfer. Seperti yang sudah disebutkan di atas tadi, uap air sendiri termasuk gas rumah kaca yang memicu terjadinya Global Warming. Ini mengakibatkan pemanasan akan terus menerus berlangsung dan menambah uap air di atmosfer hingga kesetimbangan konsentrasi uap air tercapai.
3. Variasi Matahari

Beberapa Ilmuan berpendapat bahwa variasi dari matahari, yang kemudian diperkuat oleh efek umpan balik dari awan, mampu memberikan kontribusi dalam pemanasan global saat ini. Aktivitas matahari yang meningkat dapat menyebabkan meningkatnya suhu stratosfer (salah satu lapisan di atmosfer). Fenomena variasi matahari serta aktivitas gunung berapi di berbagai belahan bumi ini diperkirakan telah menyebabkan efek pemanasan sejak era pra-industri sampai tahun 1950, serta menimbulkan efek pendinginan sejak th 1950.
Dampak Global Warming

Para ilmuwan telah menggunakan berbagai teknologi yang canggih untuk mempelajari global warming. Berdasarkan berbagai analisa, para ilmuwan telah memperkirakan beberapa dampak global warming yang terjadi di bumi. Berikut adalah beberapa dampak global warming tersebut:
1. Iklim Tidak Stabil

Ilmuwan memperkirakan, selama proses global warming berlangsung bagian utara bumi akan memanas lebih cepat dibandingkan daerah lain. Hal ini menyebabkan banyak gunung es mencair dan daratan di daerah tersebut akan mengecil. Es yang terapung di perairan utara tersebut pun akan berkurang. Akibatnya, daerah yang dulunya mengalami hujan salju ringan, mungkin beberapa waktu yang akan datang tidak akan mengalaminya lagi akibat global warming.
2. Meningkatnya Permukaan Laut

Ketika suhu atmosfer meningkat, suhu lapisan permukaan laut juga ikut meningkat. Akibatnya, volume air laut akan meningkat karena efek anomali air dan tinggi permukaan laut pun semakin meningkat. Selain itu sebagai akibat dari global warming, telah banyak es di kutub yang mencair (terutama di sekitar Greenland). Mencairnya es tersebut juga mampu memperbesar volume air laut di bumi.

Selama abad 20, tinggi permukaan air laut di seluruh dunia telah naik sekitar 10 – 25 cm. Ilmuwan juga telah memprediksi bahwa pada abad ke-21 tinggi permukaan lau akan terus naik sekitar 9 – 88 cm.
3. Peningkatan Suhu Global

Kebanyakan orang mungkin berpikir bahwa bumi yang lebih hangat mampu menghasilkan lebih banyak berbagai macam hasil pangan dari sebelumnya, namun kenyataanya hal tersebut tidak berlaku samadi semua tempat. Bagian selatan Kanada misalnya, daerah tersebut memang akan mendapatkan keuntungan dengan curah hujan yang lebih tinggi akibat menghangatnya bumi karena musim tanam akan menjadi lebih lama. Namun di lain pihak, berbagai lahan pertanian semi kering di wilayah Afrika mungkin akan mengalami kerugian yang besar akibat kurangnya air irigasi jika suhu global terus meningkat.
4. Gangguan Ekologis

Akibat pemanasan global, binatang di alam liar lebih memilih untuk bermigrasi atau pindah ke arah kutub atau ke pegunungan mencari tempat yang lebih dingin. Tumbuhan pun akan merubah arah laju pertumbuhannya guna mencari habitat baru. Namun migrasi ini akan terganggu oleh pembangunan yang dilakukan manusia di habitat alami mereka. Hewan yang bermigrasi ke arah kutub namun kemudian terhalangi oleh kota-kota maupun lahan pertanian mungkin akan mati.
Pengendalian Global Warming

Berbagai upaya yang dilakukan maupun sedang dibicarakan saat ini tak ada satupun yang mampu mencegah Global Warming di masa mendatang. Yang bisa dilakukan adalah mengatasi berbagai efek yang muncul dan melakukan berbagai langkah untuk menghindari semakin berubahnya iklim di masa yang akan datang.

Beberapa contoh upaya yang telah dilakukan untuk mengatasi efek global warming yang telah muncul misalnya dengan melindungi pantai dengan tembok penghalang agar air laut tidah masuk ke pemukiman, merelokasi penduduk di pinggiran pantai ke daerah yang lebih tinggi, dll.

Untuk memperlambat bertambahnya gas rumah kaca di atmosfer, ada 2 cara yang bisa dilakukan, yaitu dengan mencegah karbon dioksida dilepas ke atmosfer bumi dengan cara menyimpannya di tempat lain, serta dengan mengurangi produksi atau emisi gas rumah kaca.

Mungkin global warming atau pemanasan global memang tidak dapat dihentikan, namun peran dari anda untuk menjaga lingkungan sangatlah penting untuk mencegah perubahan iklim yang semakin ektrim. Saya berharap setelah anda mengerti tentang pengertian global warming dan berbagai dampak yang ditimbulkannya, anda bisa lebih menghargai dan menjaga lingkungan sekitar agar tetap terjaga. 


Efek rumah kaca, yang pertama kali diusulkan oleh Joseph Fourier pada 1824, merupakan proses pemanasan permukaan suatu benda langit terutama planet atau satelit yang disebabkan oleh komposisi dan keadaan atmosfernya.

Mars, Venus, dan benda langit beratmosfer lainnya seperti satelit alami Saturnus, Titan ternyata juga memiliki efek rumah kaca.  Efek rumah kaca dapat digunakan untuk menunjuk dua hal berbeda. Efek rumah kaca alami yang terjadi secara alami di bumi, dan efek rumah kaca ditingkatkan yang terjadi akibat aktivitas manusia. Yang belakang diterima oleh semua; yang pertama diterima kebanyakan oleh ilmuwan, meskipun ada beberapa perbedaan pendapat.

Matahari adalah sumber dari segala energi di bumi. Energi cahaya matahari dirubah menjadi energi yang dapat menghangatkan ketika mencapai permukaan bumi. Permukaan bumi akan menyerap sebagian panas matahari dan memantulkan kembali sisanya. Sebagian dari panas ini berwujud radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap air, CO2, dan metana yang menjadi perangkap gelombang radiasi ini.

Gas-gas ini menyerap dan memantulkannya kembali ke permukaan bumi, sehingga panas dari gelombang radiasi tersebut tersimpan di permukaan bumi yang menyebabkan meningkatnya suhu rata-rata tahunan bumi.

Efek rumah kaca ini sangat dibutuhkan oleh seluruh penghuni bumi. Karena tanpa adanya efek rumah kaca, suhu permukaan bumi akan sangat dingin. Suhu rata-rata planet bumi sudah meningkat sekitar 33°C menjadi 15°C dari suhu awal yang -18°C. Jika tidak ada efek rumah kaca ini maka permukaan bumi akan tertutup oleh lapisan es, namun jika berlebihan maka akan menyebabkan pemanasan global.

     #Penyebab
Ada tiga faktor utama tingginya emisi gas rumah kaca, yakni kerusakan hutan dan lahan, penggunaan energi yang tidak ramah lingkungan dan pembuangan limbah. Ini harus dikendalikan agar emisi gas rumah kaca bisa diturunkan.

Efek rumah kaca disebabkan karena naiknya konsentrasi gas karbon dioksida (CO2) dan gas-gas lainnya di atmosfer. Kenaikan konsentrasi gas CO2 ini disebabkan oleh kenaikan pembakaran bahan bakar minyak, batu bara dan bahan bakar organik lainnya yang melampaui kemampuan tumbuhan-tumbuhan dan laut untuk menyerapnya.

Energi yang masuk ke Bumi 25% dipantulkan oleh awan atau partikel lain di atmosfer, 25% diserap awan dan 45% diserap permukaan bumi dan 5% dipantulkan kembali oleh permukaan bumi
Energi yang diserap dipantulkan kembali dalam bentuk radiasi inframerah oleh awan dan permukaan bumi. Namun sebagian besar inframerah yang dipancarkan bumi tertahan oleh awan dan gas CO2 dan gas lainnya, untuk dikembalikan ke permukaan bumi. Dalam keadaan normal, efek rumah kaca diperlukan, dengan adanya efek rumah kaca perbedaan suhu antara siang dan malam di bumi tidak terlalu jauh berbeda.
Selain gas CO2, yang dapat menimbulkan efek rumah kaca adalah belerang dioksida, nitrogen monoksida (NO) dan nitrogen dioksida (NO2) serta beberapa senyawa organik seperti gas metana dan klorofluorokarbon (CFC). Gas-gas tersebut memegang peranan penting dalam meningkatkan efek rumah kaca.

     #Gas rumah kaca
Gas rumah kaca adalah gas-gas yang ada di atmosfer yang menyebabkan efek rumah kaca. Gas-gas tersebut sebenarnya muncul secara alami di lingkungan, tetapi dapat juga timbul akibat aktivitas manusia.
Gas rumah kaca yang paling banyak adalah uap air yang mencapai atmosfer akibat penguapan air dari laut, danau dan sungai. Karbondioksida adalah gas terbanyak kedua. Ia timbul dari berbagai proses alami seperti: letusan vulkanik; pernapasan hewan dan manusia (yang menghirup oksigen dan menghembuskan karbondioksida); dan pembakaran material organik (seperti tumbuhan).

Karbondioksida dapat berkurang karena terserap oleh lautan dan diserap tanaman untuk digunakan dalam proses fotosintesis. Fotosintesis memecah karbondioksida dan melepaskan oksigen ke atmosfer serta mengambil atom karbonnya.

Meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrem di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistem lainnya, sehingga mengurangi kemampuannya untuk menyerap karbon dioksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung-gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar.

Uap air Uap air adalah gas rumah kaca yang timbul secara alami dan bertanggungjawab terhadap sebagian besar dari efek rumah kaca. Konsentrasi uap air berfluktuasi secara regional, dan aktivitas manusia tidak secara langsung memengaruhi konsentrasi uap air kecuali pada skala lokal. Dalam model iklim, meningkatnya temperatur atmosfer yang disebabkan efek rumah kaca akibat gas-gas antropogenik akan menyebabkan meningkatnya kandungan uap air di troposfer, dengan kelembapan relatif yang agak konstan. Meningkatnya konsentrasi uap air mengakibatkan meningkatnya efek rumah kaca; yang mengakibatkan meningkatnya temperatur; dan kembali semakin meningkatkan jumlah uap air di atmosfer. Keadaan ini terus berkelanjutan sampai mencapai titik ekuilibrium (kesetimbangan). Oleh karena itu, uap air berperan sebagai umpan balik positif terhadap aksi yang dilakukan manusia yang melepaskan gas-gas rumah kaca seperti CO2
[1]. Perubahan dalam jumlah uap air di udara juga berakibat secara tidak langsung melalui terbentuknya awan.
Karbondioksida Manusia telah meningkatkan jumlah karbondioksida yang dilepas ke atmosfer ketika mereka membakar bahan bakar fosil, limbah padat, dan kayu untuk menghangatkan bangunan, menggerakkan kendaraan dan menghasilkan listrik. Pada saat yang sama, jumlah pepohonan yang mampu menyerap karbondioksida semakin berkurang akibat perambahan hutan untuk diambil kayunya maupun untuk perluasan lahan pertanian.  Walaupun lautan dan proses alam lainnya mampu mengurangi karbondioksida di atmosfer, aktivitas manusia yang melepaskan karbondioksida ke udara jauh lebih cepat dari kemampuan alam untuk menguranginya. Pada tahun 1750, terdapat 281 molekul karbondioksida pada satu juta molekul udara (281 ppm). Pada Januari 2007, konsentrasi karbondioksida telah mencapai 383 ppm (peningkatan 36 persen). Jika prediksi saat ini benar, pada tahun 2100, karbondioksida akan mencapai konsentrasi 540 hingga 970 ppm. Estimasi yang lebih tinggi malah memperkirakan bahwa konsentrasinya akan meningkat tiga kali lipat bila dibandingkan masa sebelum revolusi industri.
Metana Metana yang merupakan komponen utama gas alam juga termasuk gas rumah kaca. Ia merupakan insulator yang efektif, mampu menangkap panas 20 kali lebih banyak bila dibandingkan karbondioksida. Metana dilepaskan selama produksi dan transportasi batu bara, gas alam, dan minyak bumi. Metana juga dihasilkan dari pembusukan limbah organik di tempat pembuangan sampah (landfill), bahkan dapat keluarkan oleh hewan-hewan tertentu, terutama sapi, sebagai produk samping dari pencernaan. Sejak permulaan revolusi industri pada pertengahan 1700-an, jumlah metana di atmosfer telah meningkat satu setengah kali lipat. Metan berasal dari gas alamiah, pertambangan batubara, kotoran hewan dan tumbuhan yang telah membusuk. Hal yang paling dikhawatirkan para ilmuwan adalah tumbuhan yang membusuk. Beberapa ribu tahun yang lalu, miliaran ton metan terbentuk dari pembusukan tumbuh-tumbuhan Arktik di Kutub Utara. Tumbuhan itu membusuk dan membeku di dasar laut. Saat kutub utara mulai menghangat, metan yang tersimpan di dasar laut itu dapat mempercepat pemanasan di kawasan itu.
Nitrogen Oksida Nitrogen oksida adalah gas insulator panas yang sangat kuat. Ia dihasilkan terutama dari pembakaran bahan bakar fosil dan oleh lahan pertanian. Ntrogen oksida dapat menangkap panas 300 kali lebih besar dari karbondioksida. Konsentrasi gas ini telah meningkat 16 persen bila dibandingkan masa pre-industri.

Gas lainnya Gas rumah kaca lainnya dihasilkan dari berbagai proses manufaktur. Campuran berflourinasi dihasilkan dari peleburan alumunium. Hidrofluorokarbon (HCFC-22) terbentuk selama manufaktur berbagai produk, termasuk busa untuk insulasi, perabotan (furniture), dan tempat duduk di kendaraan. Lemari pendingin di beberapa negara berkembang masih menggunakan klorofluorokarbon (CFC) sebagai media pendingin yang selain mampu menahan panas atmosfer juga mengurangi lapisan ozon (lapisan yang melindungi Bumi dari radiasi ultraviolet). Selama masa abad ke-20, gas-gas ini telah terakumulasi di atmosfer, tetapi sejak 1995, untuk mengikuti peraturan yang ditetapkan dalam Protokol Montreal tentang Substansi-substansi yang Menipiskan Lapisan Ozon, konsentrasi gas-gas ini mulai makin sedikit dilepas ke udara. Para ilmuan telah lama mengkhawatirkan tentang gas-gas yang dihasilkan dari proses manufaktur akan dapat menyebabkan kerusakan lingkungan. Pada tahun 2000, para ilmuan mengidentifikasi bahan baru yang meningkat secara substansial di atmosfer. Bahan tersebut adalah trifluorometil sulfur pentafluorida.
Konsentrasi gas ini di atmosfer meningkat dengan sangat cepat, yang walaupun masih tergolong langka di atmosfer tetapi gas ini mampu menangkap panas jauh lebih besar dari gas-gas rumah kaca yang telah dikenal sebelumnya. Hingga saat ini sumber industri penghasil gas ini masih belum teridentifikasi.
Selain karbon dioksida, ada dua gas lagi yang dikhawatirkan mempercepat pemanasan global lebih buruk lagi. Keduanya adalah metan dan nitrogen triflorida yang berasal dari tanaman purba dan teknologi layar flat-panel. Menurut para pengamat lingkungan, kedua gas tersebut menimbulkan efek rumah kaca seperti karbon dioksida. Bahkan, kedua gas tersebut memberi efek hampir sama dari yang disebabkan karbondioksida. Penelitian terbaru menunjukkan dalam beberapa tahun terakhir efek kedua gas tersebut semakin meningkat di luar perkiraan. Para pengamat cuaca juga terkejut dengan peningkatan tersebut.
Selama ini gas metan masih menjadi kekhawatiran terbesar setelah karbon dioksida. Pasalnya, gas tersebut dianggap sebagai gas efek rumah kaca kedua setelah karbon dioksida berdasar besarnya efek pemanasan yang dihasilkan dan jumlahnya di atmosfer. Gas metan menyumbang sepertiga dari efek karbondioksida terhadap pemanasan global.

Para ilmuwan telah berupaya untuk mempelajari bagaimana proses tersebut akan bermula. Saat ini data yang terkumpul masih berupa data awal, belum ada kesimpulan. Tetapi para ilmuwan tersebut mengatakan apa yang mereka lihat di awal ini adalah permulaan pelepasan metan di kutub utara.
Dalam delapan tahun terakhir kadar metan di atmosfer masih stabil yang diperkirakan setiap 40 menit oleh monitor pengawas dekat tebing di tepi laut. Tetapi pada 2006 hasilnya menunjukkan terjadinya peningkatan. Jumlah gas metan di udara melonjak dari sekitar 28 juta ton pada Juni 2006 hingga Oktober 2007. Saat ini jumlahnya sudah mencapai 5,6 miliar ton metan di udara. Jika hal ini terus terjadi, maka akan buruk efeknya. Saat kadar metan terus meningkat, tentunya akan mempercepat perubahan iklim. Di lain pihak, kadar nitrogen triflorida di udara diperkirakan meningkat empat kali lipat beberapa tahun terakhir dan 30 kali lipat sejak 1978. Namun, peningkatan tersebut hanya menyumbang 0,04 persen dari total efek pemanasan global yang disebabkan oleh karbondioksida. Gas ini biasanya digunakan sebagai semacam pembersih pada industri manufaktur televisi dan monitor komputer serta panel.

Nitrogen triflorida yang dihiting dengan skala bagian per triliun di udara selama ini memang dianggap ancaman tak berarti. Menurut profesor geofisika Ray Weiss di Lembaga Oseanografi, upaya awal untuk mengetahui jumlah gas tersebut di udara memang diremehkan mengingat jumlahnya yang tak terlalu besar.
Tetapi gas tersebut justru dikategorikan sebagai salah satu gas yang lebih berbahaya karena ratusan kali lebih kuat menyimpan panas daripada karbondioksida. Sedangkan metan hanya 20 kali lebih berbahaya dari karbondioksida per basis molekul. Karbondioksida masih menjadi gas yang paling berbahaya karena kadarnya yang sangat tinggi dan pertumbuhannya yang cepat.
Menurut penelitian sebuah survei di musim panas, menemukan kadar metan di Laut Siberia timur meningkat dari 10.000 kali lebih tinggi dari kadar normalnya. Peningkatan dua gas tersebut adalah fenomena baru.

      #Dampak
Menurut perhitungan simulasi, efek rumah kaca telah meningkatkan suhu rata-rata bumi 1-5 °C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5 °C sekitar tahun 2030. Dengan meningkatnya konsentrasi gas CO2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat.
Dunia telah kehilangan hampir 20 persen terumbu karangnya akibat emisi karbon dioksida. Laporan yang dirilis Global Coral Reef Monitoring Network ini merupakan upaya memberi tekanan atas peserta konferensi PBB mengenai iklim agar membuat kemajuan dalam memerangi kenaikan suhu global. Jika kecenderungan emisi karbon dioksida saat ini terus berlangsung, banyak terumbu karang mungkin akan hilang dalam waktu 20 sampai 40 tahun mendatang, dan ini akan memiliki konsekuensi bahaya bagi sebanyak 500 juta orang yang bergantung atas terumbu karang untuk memperoleh nafkah mereka. Jika tak ada perubahan, kita akan menyaksikan berlipatnya karbon dioksida di atmosfer dalam waktu kurang dari 50 tahun.
Karena karbon ini diserap, samudra akan menjadi lebih asam, yang secara serius merusak sangat banyak biota laut dari terumbu karang hingga kumpulan plankton dan dari udang besar hingga rumput laut. Saat ini, perubahan iklim dipandang sebagai ancaman terbesar bagi terumbu karang. Ancaman utama iklim, seperti naiknya temperatur permukaan air laut dan tingkatan keasaman air laut, bertambah besar oleh ancaman lain termasuk pengkapan ikan secara berlebihan, polusi dan spesies pendatang.

     #Pencegahan
Penanaman satu miliar pohon per tahun bisa menurunkan emisi gas rumah kaca, sehingga target 26 persen pada 2020 diharapkan bisa tercapai. Penurunan emisi gas rumah kaca (GRK) sekitar 26 persen pada 2020 mendatang, antara lain melakukan upaya pengendalian kerusakan hutan, penggunaan energi dan transportasi, serta pengolahan limbah. Penurunan gas rumah kaca di Indonesia bisa diturunkan hingga 41 persen, bila mendapatkan dukungan dari luar negeri. Kalau ada dukungan dari luar negeri, maka penurunan emisi bisa bertambah 15 persen, sehingga bisa 41 persen penurunannya.
Penting dilakukan upaya pengendalian kebakaran hutan dan lahan, pengelolaan sistem jaringan dan tata air, rehabilitasi hutan dan lahan, pemberantasan pembalakan liar, pencegahan deforestasi dan pemberdayaan masyarakat.

Penggunaan energi ramah lingkungan dan transportasi yang efisien juga bisa membantu mengurangi emisi gas rumah kaca. Kawasan Konservasi Mangrove ini sangat baik untuk membantu penurunan emisi gas rumah kaca, selain merupakan elemen yang paling banyak berperan dalam menyeimbangkan kualitas lingkungan dan menetralisir bahan-bahan pencemar.