#menubar{ width:900px; height:32px; background:#de360f; margin: 0 auto; } #menubar ul{ float:left; margin:0; padding:0; } #menubar li{ float:left; list-style:none; margin:0; padding:0; } #menubar li a, #menubar li a:link{ border-right:1px solid #F0512D; float:left; padding:8px 12px; color:#fff; text-decoration:none; font-size:13px; font-weight:bold; } #menubar li a:hover, #menubar li a:active, #menubar .current_page_item a { color:#ffa500; text-decoration:underline; } #menubar li li a, #menubar li li a:link, #menubar li li a:visited{ font-size: 12px; background: #de360f; color: #fff; text-decoration:none; width: 150px; padding: 0px 10px; line-height:30px; } #menubar li li a:hover, #menubar li li a:active { background: #F0512D; color: #ffa500; } #menubar li ul{ z-index:9999; position:absolute; left:-999em; height:auto; width:170px; margin-top:32px; border:1px solid ##F0512D; } #menubar li:hover ul, #menubar li li:hover ul, #menubar li li li:hover ul, #menubar li.sfhover ul, #menubar li li.sfhover ul, #menubar li li li.sfhover ul{ left:auto } #menubar li:hover, #menubar li.sfhover{ position:static }

Minggu, 22 September 2013

logaritma

Jika \displaystyle ^{x+y}\log{2}=a dan \displaystyle ^{x-y}\log{8}=b, dengan 0 < y < x, maka ^4\log(x^2-y^2)=....
  1.   \dfrac{a+3b}{ab}
  2.   \dfrac{a+b}{2ab}
  3.   \dfrac{a+b}{4ab}
  4.   \dfrac{3a+b}{2ab}
  5.   \dfrac{3a+b}{4ab}

 
Jawab :
\displaystyle \begin{aligned}     ^4\log(x^2-y^2)&=\:{^2}^2\log\left\{(x+y)(x-y)\right\}\\     &=\tfrac{1}{2}\cdot \left\{\;^2\!\log(x+y)+^2\!\log(x-y)\right\}&~~~~~...\:(1)\end{aligned}
Diketahui juga :
\displaystyle \begin{aligned}     ^{x+y}\log{2}=a\:\Leftrightarrow\: ^2\log(x+y)=\frac{1}{a} &~~~~~...\:(2)  \end{aligned}
dan
\displaystyle \begin{aligned}     ^{x-y}\log{8}=b&\:\Leftrightarrow\: ^8\log(x-y)=\frac{1}{b}\\     &\:\Leftrightarrow\: {^2}^3\log(x+y)=\frac{1}{b}\\     &\:\Leftrightarrow\: \frac{1}{3}\cdot{^2}\log(x-y)=\frac{1}{b}\\     &\:\Leftrightarrow\: ^2\log(x-y)=\frac{3}{b} &~~~~~...\:(3)  \end{aligned}
Subtitusikan (2) dan (3) ke pers (1)
\displaystyle \begin{aligned}     ^4\log(x^2-y^2)&=\frac{1}{2}\cdot \left\{\frac{1}{a}+\frac{3}{b}\right\}\\     &=\frac{3a+b}{2ab}  \end{aligned}
Jawaban : D
catatan :
\displaystyle \boxed{~\:{^a}^{n} \log{b^m}=\frac{m}{n}\cdot^a\log{b}~}
\boxed{~^a\log{b}=c\rightarrow\:^b\log{a}=\frac{1}{c}~}

0 komentar:

Posting Komentar